1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
/*
* Portions Copyright (C) 2003 Sun Microsystems, Inc.
* All rights reserved.
*/
/*
*
* COPYRIGHT NVIDIA CORPORATION 2003. ALL RIGHTS RESERVED.
* BY ACCESSING OR USING THIS SOFTWARE, YOU AGREE TO:
*
* 1) ACKNOWLEDGE NVIDIA'S EXCLUSIVE OWNERSHIP OF ALL RIGHTS
* IN AND TO THE SOFTWARE;
*
* 2) NOT MAKE OR DISTRIBUTE COPIES OF THE SOFTWARE WITHOUT
* INCLUDING THIS NOTICE AND AGREEMENT;
*
* 3) ACKNOWLEDGE THAT TO THE MAXIMUM EXTENT PERMITTED BY
* APPLICABLE LAW, THIS SOFTWARE IS PROVIDED *AS IS* AND
* THAT NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
* EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
* TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS BE LIABLE FOR ANY
* SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
* WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
* OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
* INFORMATION, OR ANY OTHER PECUNIARY LOSS), INCLUDING ATTORNEYS'
* FEES, RELATING TO THE USE OF OR INABILITY TO USE THIS SOFTWARE,
* EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
*/
package demos.cg.runtime_ogl_vertex_fragment;
import com.jogamp.opengl.cg.*;
import com.jogamp.opengl.*;
import com.jogamp.opengl.awt.*;
import com.jogamp.opengl.glu.*;
import com.jogamp.opengl.util.*;
import com.jogamp.opengl.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.nio.*;
import java.util.*;
/**
* Basic example of the use of the Cg runtime in a simple OpenGL program.
* Ported to Java from NVidia's original C source by Christopher Kline, 06
* June 2003. Original NVidia copyright is preserved in the source code.
*/
public class runtime_ogl_vertex_fragment implements GLEventListener
{
// Global variables: hold the Cg context that we're storing our programs
// in as well as handles to the vertex and fragment program used in this
// demo.
private GLU glu = new GLU();
CGcontext context;
CGprogram vertexProgram, fragmentProgram;
///////////////////////////////////////////////////////////////////////////
// Main program; do basic GLUT and Cg setup, but leave most of the work
// to the display() function.
public static void main(String[] argv)
{
Frame frame = new Frame("Cg demo (runtime_ogl_vertex_fragment)");
GLCanvas canvas = new GLCanvas();
canvas.addGLEventListener(new runtime_ogl_vertex_fragment());
frame.add(canvas);
frame.setSize(512, 512);
final Animator animator = new Animator(canvas);
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
// Run this on another thread than the AWT event queue to
// make sure the call to Animator.stop() completes before
// exiting
new Thread(new Runnable() {
public void run() {
animator.stop();
System.exit(0);
}
}).start();
}
});
frame.setVisible(true);
animator.start();
// and all the rest happens in the display function...
}
public void init(GLAutoDrawable drawable)
{
// Use debug pipeline
// drawable.setGL(new DebugGL(drawable.getGL()));
GL2 gl = drawable.getGL().getGL2();
// Basic Cg setup; register a callback function for any errors
// and create an initial context
//cgSetErrorCallback(handleCgError); // not yet exposed in Cg binding
context = CgGL.cgCreateContext();
// Do one-time setup only once; setup Cg programs and textures
// and set up OpenGL state.
ChooseProfiles();
LoadCgPrograms();
LoadTextures(gl);
gl.glEnable(GL.GL_DEPTH_TEST);
}
public void dispose(GLAutoDrawable drawable) {
}
private void CheckCgError()
{
/*CGerror*/ int err = CgGL.cgGetError();
if (err != CgGL.CG_NO_ERROR)
{
throw new RuntimeException("CG error: " + CgGL.cgGetErrorString(err));
}
}
private static int curTime = 0;
// display callback function
public void display(GLAutoDrawable drawable)
{
GL2 gl = drawable.getGL().getGL2();
// The usual OpenGL stuff to clear the screen and set up viewing.
gl.glClearColor(.25f, .25f, .25f, 1.0f);
gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT);
gl.glMatrixMode(GL2ES1.GL_PROJECTION);
gl.glLoadIdentity();
glu.gluPerspective(30.0f, 1.0f, .1f, 100);
gl.glMatrixMode(GL2ES1.GL_MODELVIEW);
gl.glLoadIdentity();
glu.gluLookAt(4, 4, -4, 0, 0, 0, 0, 1, 0);
// Make the object rotate a bit each time the display function
// is called
gl.glRotatef(curTime, 0, 1, 0);
// Now make sure that the vertex and fragment programs, loaded
// in LoadCgPrograms() are bound.
CgGL.cgGLBindProgram(vertexProgram);
CgGL.cgGLBindProgram(fragmentProgram);
// Bind uniform parameters to vertex shader
CgGL.cgGLSetStateMatrixParameter(CgGL.cgGetNamedParameter(vertexProgram, "ModelViewProj"),
CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX,
CgGL.CG_GL_MATRIX_IDENTITY);
CgGL.cgGLSetStateMatrixParameter(CgGL.cgGetNamedParameter(vertexProgram, "ModelView"),
CgGL.CG_GL_MODELVIEW_MATRIX,
CgGL.CG_GL_MATRIX_IDENTITY);
CgGL.cgGLSetStateMatrixParameter(CgGL.cgGetNamedParameter(vertexProgram, "ModelViewIT"),
CgGL.CG_GL_MODELVIEW_MATRIX,
CgGL.CG_GL_MATRIX_INVERSE_TRANSPOSE);
// We can also go ahead and bind varying parameters to vertex shader
// that we just want to have the same value for all vertices. The
// vertex shader could be modified so that these were uniform for
// better efficiency, but this gives us flexibility for the future.
float Kd[] = { .7f, .2f, .2f }, Ks[] = { .9f, .9f, .9f };
CgGL.cgGLSetParameter3fv(CgGL.cgGetNamedParameter(vertexProgram, "diffuse"), Kd, 0);
CgGL.cgGLSetParameter3fv(CgGL.cgGetNamedParameter(vertexProgram, "specular"), Ks, 0);
// Now bind uniform parameters to fragment shader
float lightPos[] = { 3, 2, -3 };
CgGL.cgGLSetParameter3fv(CgGL.cgGetNamedParameter(fragmentProgram, "Plight"), lightPos, 0);
float lightColor[] = { 1, 1, 1 };
CgGL.cgGLSetParameter3fv(CgGL.cgGetNamedParameter(fragmentProgram, "lightColor"),
lightColor, 0);
CgGL.cgGLSetParameter1f(CgGL.cgGetNamedParameter(fragmentProgram, "shininess"), 40);
// And finally, enable the approprate texture for fragment shader; the
// texture was originally set up in LoadTextures().
CgGL.cgGLEnableTextureParameter(CgGL.cgGetNamedParameter(fragmentProgram,
"diffuseMap"));
// And go ahead and draw the scene geometry
DrawGeometry(gl);
// Disable the texture now that we're done with it.
CgGL.cgGLDisableTextureParameter(CgGL.cgGetNamedParameter(fragmentProgram,
"diffuseMap"));
++curTime;
}
// Choose the vertex and fragment profiles to use. Try to use
// CG_PROFILE_ARBVFP1 and CG_PROFILE_ARBFP1, depending on hardware support.
// If those aren't available, fall back to CG_PROFILE_VP30 and
// CG_PROFILE_FP30, respectively.
int /*CGprofile*/ vertexProfile, fragmentProfile;
void ChooseProfiles()
{
// Make sure that the appropriate profiles are available on the
// user's system.
if (CgGL.cgGLIsProfileSupported(CgGL.CG_PROFILE_ARBVP1))
vertexProfile = CgGL.CG_PROFILE_ARBVP1;
else {
// try VP30
if (CgGL.cgGLIsProfileSupported(CgGL.CG_PROFILE_VP30))
vertexProfile = CgGL.CG_PROFILE_VP30;
else {
System.out.println("Neither arbvp1 or vp30 vertex profiles supported on this system.\n");
System.exit(1);
}
}
if (CgGL.cgGLIsProfileSupported(CgGL.CG_PROFILE_ARBFP1))
fragmentProfile = CgGL.CG_PROFILE_ARBFP1;
else {
// try FP30
if (CgGL.cgGLIsProfileSupported(CgGL.CG_PROFILE_FP30))
fragmentProfile = CgGL.CG_PROFILE_FP30;
else {
System.out.println("Neither arbfp1 or fp30 fragment profiles supported on this system.\n");
System.exit(1);
}
}
}
void LoadCgPrograms()
{
assert(CgGL.cgIsContext(context));
// Load and compile the vertex program from demo_vert.cg; hold on to the
// handle to it that is returned.
try {
vertexProgram = CgGL.cgCreateProgramFromStream(context, CgGL.CG_SOURCE,
getClass().getClassLoader().getResourceAsStream("demos/cg/runtime_ogl_vertex_fragment/demo_vert.cg"),
vertexProfile, null, null);
} catch (IOException e) {
throw new RuntimeException("Error loading Cg vertex program", e);
}
if (!CgGL.cgIsProgramCompiled(vertexProgram))
CgGL.cgCompileProgram(vertexProgram);
// Enable the appropriate vertex profile and load the vertex program.
CgGL.cgGLEnableProfile(vertexProfile);
CgGL.cgGLLoadProgram(vertexProgram);
// And similarly set things up for the fragment program.
try {
fragmentProgram = CgGL.cgCreateProgramFromStream(context, CgGL.CG_SOURCE,
getClass().getClassLoader().getResourceAsStream("demos/cg/runtime_ogl_vertex_fragment/demo_frag.cg"),
fragmentProfile, null, null);
} catch (IOException e) {
throw new RuntimeException("Error loading Cg fragment program", e);
}
if (!CgGL.cgIsProgramCompiled(fragmentProgram)) {
CgGL.cgCompileProgram(fragmentProgram);
}
CgGL.cgGLEnableProfile(fragmentProfile);
CgGL.cgGLLoadProgram(fragmentProgram);
}
void LoadTextures(GL2 gl)
{
// There is only one texture needed here--we'll set up a basic
// checkerboard--which is used to modulate the diffuse channel in the
// fragment shader.
int[] handle = new int[1];
gl.glGenTextures(1, handle, 0);
// Basic OpenGL texture state setup
gl.glBindTexture(GL.GL_TEXTURE_2D, handle[0]);
gl.glTexParameteri(GL.GL_TEXTURE_2D, gl.GL_GENERATE_MIPMAP, GL.GL_TRUE);
gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR_MIPMAP_LINEAR);
gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR);
gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_S, GL.GL_CLAMP_TO_EDGE);
gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_T, GL.GL_CLAMP_TO_EDGE);
// Fill in the texture map.
final int RES = 512;
float[] data = new float[RES*RES*4];
int dp = 0;
for (int i = 0; i < RES; ++i) {
for (int j = 0; j < RES; ++j) {
if ((i/32+j/32) % 2 != 0) {
data[dp++] = .7f;
data[dp++] = .7f;
data[dp++] = .7f;
}
else {
data[dp++] = .1f;
data[dp++] = .1f;
data[dp++] = .1f;
}
data[dp++] = 1.0f;
}
}
gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_RGBA, RES, RES, 0, GL.GL_RGBA, GL.GL_FLOAT, FloatBuffer.wrap(data));
// Tell Cg which texture handle should be associated with the sampler2D
// parameter to the fragment shader.
CgGL.cgGLSetTextureParameter(CgGL.cgGetNamedParameter(fragmentProgram, "diffuseMap"),
handle[0]);
}
private int VERTEX(int u, int v, int nu) { return (u + v * nu); }
// Geometry creation and drawing function; we'll just draw a sphere.
private static FloatBuffer P, N, uv;
private static IntBuffer indices;
void DrawGeometry(GL2 gl)
{
// Cache the sphere positions, normals, texture coordinates, and
// vertex indices in a local array; we only need to fill them in the
// first time through this function.
int nu = 30, nv = 30;
int nTris = 2*(nu-1)*(nv-1), nVerts = nu*nv;
if (P == null) {
int u, v;
P = GLBuffers.newDirectFloatBuffer(3*nVerts);
N = GLBuffers.newDirectFloatBuffer(3*nVerts);
uv = GLBuffers.newDirectFloatBuffer(2*nVerts);
// Fill in the position, normal, and texture coordinate arrays.
// Just loop over all of the vertices, compute their parametreic
// (u,v) coordinates (which we use for texture coordinates as
// well), and call the ParametricEval() function, which turns (u,v)
// coordinates into positions and normals on the surface of the
// object.
int pp = 0, np = 0, uvp = 0;
for (v = 0; v < nv; ++v) {
float fv = (float)v / (float)(nv-1);
for (u = 0; u < nu; ++u) {
float fu = (float)u / (float)(nu-1);
uv.put(uvp, fu);
uv.put(uvp+1, fv);
ParametricEval(fu, fv, pp, P, np, N);
pp += 3;
np += 3;
uvp += 2;
}
}
// Now fill in the vertex index arrays
indices = GLBuffers.newDirectIntBuffer(3*nTris);
int ip = 0;
for (v = 0; v < nv-1; ++v) {
for (u = 0; u < nu-1; ++u) {
indices.put(ip++, VERTEX(u, v, nu));
indices.put(ip++, VERTEX(u+1, v, nu));
indices.put(ip++, VERTEX(u+1, v+1, nu));
indices.put(ip++, VERTEX(u, v, nu));
indices.put(ip++, VERTEX(u+1, v+1, nu));
indices.put(ip++, VERTEX(u, v+1, nu));
}
}
// Tell Cg which of these data pointers are associated with which
// parameters to the vertex shader, so that when we call
// cgGLEnableClientState() and then glDrawElements(), the shader
// gets the right input information.
CGparameter param = CgGL.cgGetNamedParameter(vertexProgram, "Pobject");
CgGL.cgGLSetParameterPointer(param, 3, GL.GL_FLOAT, 0, P);
param = CgGL.cgGetNamedParameter(vertexProgram, "Nobject");
CgGL.cgGLSetParameterPointer(param, 3, GL.GL_FLOAT, 0, N);
param = CgGL.cgGetNamedParameter(vertexProgram, "TexUV");
CgGL.cgGLSetParameterPointer(param, 2, GL.GL_FLOAT, 0, uv);
}
// And now, each time through, enable the bindings to the parameters
// that we set up the first time through
CGparameter param = CgGL.cgGetNamedParameter(vertexProgram, "Pobject");
CgGL.cgGLEnableClientState(param);
param = CgGL.cgGetNamedParameter(vertexProgram, "Nobject");
CgGL.cgGLEnableClientState(param);
param = CgGL.cgGetNamedParameter(vertexProgram, "TexUV");
CgGL.cgGLEnableClientState(param);
// Enable the texture parameter as well.
param = CgGL.cgGetNamedParameter(fragmentProgram, "diffuseMap");
CgGL.cgGLEnableTextureParameter(param);
// And now, draw the geometry.
gl.glDrawElements(GL.GL_TRIANGLES, 3*nTris, gl.GL_UNSIGNED_INT, indices);
// Be a good citizen and disable the various bindings we set up above.
param = CgGL.cgGetNamedParameter(vertexProgram, "Pobject");
CgGL.cgGLDisableClientState(param);
param = CgGL.cgGetNamedParameter(vertexProgram, "Nobject");
CgGL.cgGLDisableClientState(param);
param = CgGL.cgGetNamedParameter(vertexProgram, "TexUV");
CgGL.cgGLDisableClientState(param);
param = CgGL.cgGetNamedParameter(fragmentProgram, "diffuseMap");
CgGL.cgGLDisableTextureParameter(param);
}
void ParametricEval(float u, float v, int offsetP, FloatBuffer p, int offsetN, FloatBuffer N)
{
float theta = (float)Math.PI * u, phi = (float)(2.0 * Math.PI * v);
P.put(offsetP + 0, (float)(Math.sin(theta) * Math.sin(phi)));
P.put(offsetP + 1, (float)(Math.sin(theta) * Math.cos(phi)));
P.put(offsetP + 2, (float)(Math.cos(theta)));
N.put(offsetN + 0, P.get(offsetP + 0));
N.put(offsetN + 1, P.get(offsetP + 1));
N.put(offsetN + 2, P.get(offsetP + 2));
}
public void displayChanged(GLAutoDrawable drawable, boolean modeChanged, boolean deviceChanged)
{
// nothing
}
public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height)
{
// do nothing
}
}
|