1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/*
* gleem -- OpenGL Extremely Easy-To-Use Manipulators.
* Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu)
*
* Copying, distribution and use of this software in source and binary
* forms, with or without modification, is permitted provided that the
* following conditions are met:
*
* Distributions of source code must reproduce the copyright notice,
* this list of conditions and the following disclaimer in the source
* code header files; and Distributions of binary code must reproduce
* the copyright notice, this list of conditions and the following
* disclaimer in the documentation, Read me file, license file and/or
* other materials provided with the software distribution.
*
* The names of Sun Microsystems, Inc. ("Sun") and/or the copyright
* holder may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY
* KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF
* INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE
* COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE
* COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST
* REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
* CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
* REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
* INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT
* DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION,
* OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT
* HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED
* WARRANTY OF FITNESS FOR SUCH USES.
*/
package gleem;
import gleem.linalg.*;
/** Implements ray casting against a 3D triangle. */
public class RayTriangleIntersection {
public static final int ERROR = 0;
public static final int NO_INTERSECTION = 1;
public static final int INTERSECTION = 2;
/** Allow roundoff error of this amount. Be very careful adjusting
this. Too big a value may cause valid triangles to be rejected.
Too small a value may trigger an assert in the code to create an
orthonormal basis in intersectRayWithTriangle. */
private static final float epsilon = 1.0e-3f;
/** Cast a ray starting at rayOrigin with rayDirection into the
triangle defined by vertices v0, v1, and v2. If intersection
occurred returns INTERSECTION and sets intersectionPoint
appropriately, including t parameter (scale factor for
rayDirection to reach intersection plane starting from
rayOrigin). Returns NO_INTERSECTION if no intersection, or ERROR
if triangle was degenerate or line was parallel to plane of
triangle. */
public static int intersectRayWithTriangle(Vec3f rayOrigin,
Vec3f rayDirection,
Vec3f v0,
Vec3f v1,
Vec3f v2,
IntersectionPoint intersectionPoint) {
// Returns INTERSECTION if intersection computed, NO_INTERSECTION
// if no intersection with triangle, ERROR if triangle was
// degenerate or line did not intersect plane containing triangle.
// NOTE these rays are TWO-SIDED.
// Find point on line. P = ray origin, D = ray direction.
// P + tD = W
// Find point on plane. X, Y = orthonormal bases for plane; O = its origin.
// O + uX + vY = W
// Set equal
// O + uX + vY = tD + P
// uX + vY - tD = P - O = "B"
// [X0 Y0 -D0] [u] [B0]
// [X1 Y1 -D1] [v] = [B1]
// [X2 Y2 -D2] [t] [B2]
// Now we have u, v coordinates for the intersection point (if system
// wasn't degenerate).
// Find u, v coordinates for three points of triangle. (DON'T DUPLICATE
// WORK.) Now easy to do 2D inside/outside test.
// If point is inside, do some sort of interpolation to compute the
// 3D coordinates of the intersection point (may be unnecessary --
// can reuse X, Y bases from above) and texture coordinates of this
// point (maybe compute "texture coordinate" bases using same algorithm
// and just use u, v coordinates??).
Vec3f O = new Vec3f(v0);
Vec3f p2 = new Vec3f();
p2.sub(v1, O);
Vec3f p3 = new Vec3f();
p3.sub(v2, O);
Vec3f X = new Vec3f(p2);
Vec3f Y = new Vec3f(p3);
// Normalize X
if (X.length() < epsilon)
return ERROR; // coincident points in triangle
X.normalize();
// Use Gramm-Schmitt to orthogonalize X and Y
Vec3f tmp = new Vec3f(X);
tmp.scale(X.dot(Y));
Y.sub(tmp);
if (Y.length() < epsilon) {
return ERROR; // coincident points in triangle
}
Y.normalize();
// X and Y are now orthonormal bases for the plane defined by the
// triangle.
Vec3f Bv = new Vec3f();
Bv.sub(rayOrigin, O);
Mat3f A = new Mat3f();
A.setCol(0, X);
A.setCol(1, Y);
Vec3f tmpRayDir = new Vec3f(rayDirection);
tmpRayDir.scale(-1.0f);
A.setCol(2, tmpRayDir);
if (!A.invert()) {
return ERROR;
}
Vec3f B = new Vec3f();
A.xformVec(Bv, B);
Vec2f W = new Vec2f(B.x(), B.y());
// Compute u,v coords of triangle
Vec2f[] uv = new Vec2f[3];
uv[0] = new Vec2f(0,0);
uv[1] = new Vec2f(p2.dot(X), p2.dot(Y));
uv[2] = new Vec2f(p3.dot(X), p3.dot(Y));
if (!(Math.abs(uv[1].y()) < epsilon)) {
throw new RuntimeException("Math.abs(uv[1].y()) >= epsilon");
}
// Test. For each of the sides of the triangle, is the intersection
// point on the same side as the third vertex of the triangle?
// If so, intersection point is inside triangle.
for (int i = 0; i < 3; i++) {
if (approxOnSameSide(uv[i], uv[(i+1)%3],
uv[(i+2)%3], W) == false) {
return NO_INTERSECTION;
}
}
// Blend coordinates and texture coordinates according to
// distances from 3 points
// To do: find u,v coordinates of intersection point in coordinate
// system of axes defined by uv[1] and uv[2].
// Blending coords == a, b. 0 <= a,b <= 1.
if (!(Math.abs(uv[2].y()) > epsilon)) {
throw new RuntimeException("Math.abs(uv[2].y()) <= epsilon");
}
if (!(Math.abs(uv[1].x()) > epsilon)) {
throw new RuntimeException("Math.abs(uv[1].x()) <= epsilon");
}
float a, b;
b = W.y() / uv[2].y();
a = (W.x() - b * uv[2].x()) / uv[1].x();
p2.scale(a);
p3.scale(b);
O.add(p2);
O.add(p3);
intersectionPoint.setIntersectionPoint(O);
intersectionPoint.setT(B.z());
return INTERSECTION;
}
private static boolean approxOnSameSide(Vec2f linePt1, Vec2f linePt2,
Vec2f testPt1, Vec2f testPt2) {
// Evaluate line equation for testPt1 and testPt2
// ((y2 - y1) / (x2 - x1)) - ((y1 - y) / (x1 - x))
// y - (mx + b)
float num0 = linePt2.y() - linePt1.y();
float den0 = linePt2.x() - linePt1.x();
float num1 = linePt1.y() - testPt1.y();
float den1 = linePt1.x() - testPt1.x();
float num2 = linePt1.y() - testPt2.y();
float den2 = linePt1.x() - testPt2.x();
if (Math.abs(den0) < epsilon) {
// line goes vertically.
if ((Math.abs(den1) < epsilon) ||
(Math.abs(den2) < epsilon)) {
return true;
}
if (MathUtil.sgn(den1) == MathUtil.sgn(den2)) {
return true;
}
return false;
}
float m = num0 / den0;
// (y - y1) - m(x - x1)
float val1 = testPt1.y() - linePt1.y() - m * (testPt1.x() - linePt1.x());
float val2 = testPt2.y() - linePt1.y() - m * (testPt2.x() - linePt1.x());
if ((Math.abs(val1) < epsilon) ||
(Math.abs(val2) < epsilon)) {
return true;
}
if (MathUtil.sgn(val1) == MathUtil.sgn(val2)) {
return true;
}
return false;
}
}
|