summaryrefslogtreecommitdiffstats
path: root/src/gleem/linalg/Mat3f.java
blob: 024df82190922d814bb0fe0e7afbf22fd3783cd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 * gleem -- OpenGL Extremely Easy-To-Use Manipulators.
 * Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu)
 *
 * Copying, distribution and use of this software in source and binary
 * forms, with or without modification, is permitted provided that the
 * following conditions are met:
 *
 * Distributions of source code must reproduce the copyright notice,
 * this list of conditions and the following disclaimer in the source
 * code header files; and Distributions of binary code must reproduce
 * the copyright notice, this list of conditions and the following
 * disclaimer in the documentation, Read me file, license file and/or
 * other materials provided with the software distribution.
 *
 * The names of Sun Microsystems, Inc. ("Sun") and/or the copyright
 * holder may not be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY
 * KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF
 * INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE
 * COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE
 * COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST
 * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
 * INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT
 * DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION,
 * OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT
 * HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED
 * WARRANTY OF FITNESS FOR SUCH USES.
 */

package gleem.linalg;

/** 3x3 matrix class useful for simple linear algebra. Representation
    is (as Mat4f) in row major order and assumes multiplication by
    column vectors on the right. */

public class Mat3f {
  private float[] data;

  /** Creates new matrix initialized to the zero matrix */
  public Mat3f() {
    data = new float[9];
  }

  /** Initialize to the identity matrix. */
  public void makeIdent() {
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 3; j++) {
        if (i == j) {
          set(i, j, 1.0f);
        } else {
          set(i, j, 0.0f);
        }
      }
    }
  }
  
  /** Gets the (i,j)th element of this matrix, where i is the row
      index and j is the column index */
  public float get(int i, int j) {
    return data[3 * i + j];
  }

  /** Sets the (i,j)th element of this matrix, where i is the row
      index and j is the column index */
  public void set(int i, int j, float val) {
    data[3 * i + j] = val;
  }

  /** Set column i (i=[0..2]) to vector v. */
  public void setCol(int i, Vec3f v) {
    set(0, i, v.x());
    set(1, i, v.y());
    set(2, i, v.z());
  }

  /** Set row i (i=[0..2]) to vector v. */
  public void setRow(int i, Vec3f v) {
    set(i, 0, v.x());
    set(i, 1, v.y());
    set(i, 2, v.z());
  }

  /** Transpose this matrix in place. */
  public void transpose() {
    float t;
    t = get(0, 1);
    set(0, 1, get(1, 0));
    set(1, 0, t);

    t = get(0, 2);
    set(0, 2, get(2, 0));
    set(2, 0, t);

    t = get(1, 2);
    set(1, 2, get(2, 1));
    set(2, 1, t);
  }

  /** Return the determinant. Computed across the zeroth row. */
  public float determinant() {
    return (get(0, 0) * (get(1, 1) * get(2, 2) - get(2, 1) * get(1, 2)) +
            get(0, 1) * (get(2, 0) * get(1, 2) - get(1, 0) * get(2, 2)) +
            get(0, 2) * (get(1, 0) * get(2, 1) - get(2, 0) * get(1, 1)));
  }

  /** Full matrix inversion in place. If matrix is singular, returns
      false and matrix contents are untouched. If you know the matrix
      is orthonormal, you can call transpose() instead. */
  public boolean invert() {
    float det = determinant();
    if (det == 0.0f)
      return false;

    // Form cofactor matrix
    Mat3f cf = new Mat3f();
    cf.set(0, 0, get(1, 1) * get(2, 2) - get(2, 1) * get(1, 2));
    cf.set(0, 1, get(2, 0) * get(1, 2) - get(1, 0) * get(2, 2));
    cf.set(0, 2, get(1, 0) * get(2, 1) - get(2, 0) * get(1, 1));
    cf.set(1, 0, get(2, 1) * get(0, 2) - get(0, 1) * get(2, 2));
    cf.set(1, 1, get(0, 0) * get(2, 2) - get(2, 0) * get(0, 2));
    cf.set(1, 2, get(2, 0) * get(0, 1) - get(0, 0) * get(2, 1));
    cf.set(2, 0, get(0, 1) * get(1, 2) - get(1, 1) * get(0, 2));
    cf.set(2, 1, get(1, 0) * get(0, 2) - get(0, 0) * get(1, 2));
    cf.set(2, 2, get(0, 0) * get(1, 1) - get(1, 0) * get(0, 1));

    // Now copy back transposed
    for (int i = 0; i < 3; i++)
      for (int j = 0; j < 3; j++)
        set(i, j, cf.get(j, i) / det);
    return true;
  }

  /** Multiply a 3D vector by this matrix. NOTE: src and dest must be
      different vectors. */
  public void xformVec(Vec3f src, Vec3f dest) {
    dest.set(get(0, 0) * src.x() +
             get(0, 1) * src.y() +
             get(0, 2) * src.z(),
             
             get(1, 0) * src.x() +
             get(1, 1) * src.y() +
             get(1, 2) * src.z(),

             get(2, 0) * src.x() +
             get(2, 1) * src.y() +
             get(2, 2) * src.z());
  }

  /** Returns this * b; creates new matrix */
  public Mat3f mul(Mat3f b) {
    Mat3f tmp = new Mat3f();
    tmp.mul(this, b);
    return tmp;
  }

  /** this = a * b */
  public void mul(Mat3f a, Mat3f b) {
    for (int rc = 0; rc < 3; rc++)
      for (int cc = 0; cc < 3; cc++) {
        float tmp = 0.0f;
        for (int i = 0; i < 3; i++)
          tmp += a.get(rc, i) * b.get(i, cc);
        set(rc, cc, tmp);
      }
  }

  public Matf toMatf() {
    Matf out = new Matf(3, 3);
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 3; j++) {
        out.set(i, j, get(i, j));
      }
    }
    return out;
  }

  public String toString() {
    String endl = System.getProperty("line.separator");
    return "(" +
      get(0, 0) + ", " + get(0, 1) + ", " + get(0, 2) + endl +
      get(1, 0) + ", " + get(1, 1) + ", " + get(1, 2) + endl +
      get(2, 0) + ", " + get(2, 1) + ", " + get(2, 2) + ")";
  }
}