1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* gleem -- OpenGL Extremely Easy-To-Use Manipulators.
* Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu)
*
* Copying, distribution and use of this software in source and binary
* forms, with or without modification, is permitted provided that the
* following conditions are met:
*
* Distributions of source code must reproduce the copyright notice,
* this list of conditions and the following disclaimer in the source
* code header files; and Distributions of binary code must reproduce
* the copyright notice, this list of conditions and the following
* disclaimer in the documentation, Read me file, license file and/or
* other materials provided with the software distribution.
*
* The names of Sun Microsystems, Inc. ("Sun") and/or the copyright
* holder may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY
* KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF
* INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE
* COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE
* COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST
* REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
* CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
* REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
* INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT
* DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION,
* OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT
* HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED
* WARRANTY OF FITNESS FOR SUCH USES.
*/
package gleem.linalg;
/** A (very incomplete) 4x4 matrix class. Representation assumes
multiplication by column vectors on the right. */
public class Mat4f {
private float[] data;
/** Creates new matrix initialized to the zero matrix */
public Mat4f() {
data = new float[16];
}
/** Creates new matrix initialized to argument's contents */
public Mat4f(Mat4f arg) {
this();
set(arg);
}
/** Sets this matrix to the identity matrix */
public void makeIdent() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (i == j) {
set(i, j, 1.0f);
} else {
set(i, j, 0.0f);
}
}
}
}
/** Sets this matrix to be equivalent to the given one */
public void set(Mat4f arg) {
float[] mine = data;
float[] yours = arg.data;
for (int i = 0; i < mine.length; i++) {
mine[i] = yours[i];
}
}
/** Gets the (i,j)th element of this matrix, where i is the row
index and j is the column index */
public float get(int i, int j) {
return data[4 * i + j];
}
/** Sets the (i,j)th element of this matrix, where i is the row
index and j is the column index */
public void set(int i, int j, float val) {
data[4 * i + j] = val;
}
/** Sets the translation component of this matrix (i.e., the three
top elements of the third column) without touching any of the
other parts of the matrix */
public void setTranslation(Vec3f trans) {
set(0, 3, trans.x());
set(1, 3, trans.y());
set(2, 3, trans.z());
}
/** Sets the rotation component of this matrix (i.e., the upper left
3x3) without touching any of the other parts of the matrix */
public void setRotation(Rotf rot) {
rot.toMatrix(this);
}
/** Sets the upper-left 3x3 of this matrix assuming that the given
x, y, and z vectors form an orthonormal basis */
public void setRotation(Vec3f x, Vec3f y, Vec3f z) {
set(0, 0, x.x());
set(1, 0, x.y());
set(2, 0, x.z());
set(0, 1, y.x());
set(1, 1, y.y());
set(2, 1, y.z());
set(0, 2, z.x());
set(1, 2, z.y());
set(2, 2, z.z());
}
/** Gets the upper left 3x3 of this matrix as a rotation. Currently
does not work if there are scales. Ignores translation
component. */
public void getRotation(Rotf rot) {
rot.fromMatrix(this);
}
/** Sets the elements (0, 0), (1, 1), and (2, 2) with the
appropriate elements of the given three-dimensional scale
vector. Does not perform a full multiplication of the upper-left
3x3; use this with an identity matrix in conjunction with
<code>mul</code> for that. */
public void setScale(Vec3f scale) {
set(0, 0, scale.x());
set(1, 1, scale.y());
set(2, 2, scale.z());
}
/** Inverts this matrix assuming that it represents a rigid
transform (i.e., some combination of rotations and
translations). Assumes column vectors. Algorithm: transposes
upper left 3x3; negates translation in rightmost column and
transforms by inverted rotation. */
public void invertRigid() {
float t;
// Transpose upper left 3x3
t = get(0, 1);
set(0, 1, get(1, 0));
set(1, 0, t);
t = get(0, 2);
set(0, 2, get(2, 0));
set(2, 0, t);
t = get(1, 2);
set(1, 2, get(2, 1));
set(2, 1, t);
// Transform negative translation by this
Vec3f negTrans = new Vec3f(-get(0, 3), -get(1, 3), -get(2, 3));
Vec3f trans = new Vec3f();
xformDir(negTrans, trans);
set(0, 3, trans.x());
set(1, 3, trans.y());
set(2, 3, trans.z());
}
/** Returns this * b; creates new matrix */
public Mat4f mul(Mat4f b) {
Mat4f tmp = new Mat4f();
tmp.mul(this, b);
return tmp;
}
/** this = a * b */
public void mul(Mat4f a, Mat4f b) {
for (int rc = 0; rc < 4; rc++)
for (int cc = 0; cc < 4; cc++) {
float tmp = 0.0f;
for (int i = 0; i < 4; i++)
tmp += a.get(rc, i) * b.get(i, cc);
set(rc, cc, tmp);
}
}
/** Transpose this matrix in place. */
public void transpose() {
float t;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < i; j++) {
t = get(i, j);
set(i, j, get(j, i));
set(j, i, t);
}
}
}
/** Multiply a 4D vector by this matrix. NOTE: src and dest must be
different vectors. */
public void xformVec(Vec4f src, Vec4f dest) {
for (int rc = 0; rc < 4; rc++) {
float tmp = 0.0f;
for (int cc = 0; cc < 4; cc++) {
tmp += get(rc, cc) * src.get(cc);
}
dest.set(rc, tmp);
}
}
/** Transforms a 3D vector as though it had a homogeneous coordinate
and assuming that this matrix represents only rigid
transformations; i.e., is not a full transformation. NOTE: src
and dest must be different vectors. */
public void xformPt(Vec3f src, Vec3f dest) {
for (int rc = 0; rc < 3; rc++) {
float tmp = 0.0f;
for (int cc = 0; cc < 3; cc++) {
tmp += get(rc, cc) * src.get(cc);
}
tmp += get(rc, 3);
dest.set(rc, tmp);
}
}
/** Transforms src using only the upper left 3x3. NOTE: src and dest
must be different vectors. */
public void xformDir(Vec3f src, Vec3f dest) {
for (int rc = 0; rc < 3; rc++) {
float tmp = 0.0f;
for (int cc = 0; cc < 3; cc++) {
tmp += get(rc, cc) * src.get(cc);
}
dest.set(rc, tmp);
}
}
/** Copies data in column-major (OpenGL format) order into passed
float array, which must have length 16 or greater. */
public void getColumnMajorData(float[] out) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
out[4 * j + i] = get(i, j);
}
}
}
public Matf toMatf() {
Matf out = new Matf(4, 4);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
out.set(i, j, get(i, j));
}
}
return out;
}
public String toString() {
String endl = System.getProperty("line.separator");
return "(" +
get(0, 0) + ", " + get(0, 1) + ", " + get(0, 2) + ", " + get(0, 3) + endl +
get(1, 0) + ", " + get(1, 1) + ", " + get(1, 2) + ", " + get(1, 3) + endl +
get(2, 0) + ", " + get(2, 1) + ", " + get(2, 2) + ", " + get(2, 3) + endl +
get(3, 0) + ", " + get(3, 1) + ", " + get(3, 2) + ", " + get(3, 3) + ")";
}
}
|