summaryrefslogtreecommitdiffstats
path: root/src/gleem/linalg/Rotf.java
blob: 4e39c210d94c72799970c10c84df42148dc7650c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
 * gleem -- OpenGL Extremely Easy-To-Use Manipulators.
 * Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu)
 *
 * Copying, distribution and use of this software in source and binary
 * forms, with or without modification, is permitted provided that the
 * following conditions are met:
 *
 * Distributions of source code must reproduce the copyright notice,
 * this list of conditions and the following disclaimer in the source
 * code header files; and Distributions of binary code must reproduce
 * the copyright notice, this list of conditions and the following
 * disclaimer in the documentation, Read me file, license file and/or
 * other materials provided with the software distribution.
 *
 * The names of Sun Microsystems, Inc. ("Sun") and/or the copyright
 * holder may not be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY
 * KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF
 * INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE
 * COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE
 * COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST
 * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
 * INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT
 * DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION,
 * OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT
 * HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED
 * WARRANTY OF FITNESS FOR SUCH USES.
 */

package gleem.linalg;

/** Represents a rotation with single-precision components */

public class Rotf {
  private static float EPSILON = 1.0e-7f;

  // Representation is a quaternion. Element 0 is the scalar part (=
  // cos(theta/2)), elements 1..3 the imaginary/"vector" part (=
  // sin(theta/2) * axis).
  private float q0;
  private float q1;
  private float q2;
  private float q3;

  /** Default constructor initializes to the identity quaternion */
  public Rotf() {
    init();
  }

  public Rotf(Rotf arg) {
    set(arg);
  }

  /** Axis does not need to be normalized but must not be the zero
      vector. Angle is in radians. */
  public Rotf(Vec3f axis, float angle) {
    set(axis, angle);
  }

  /** Creates a rotation which will rotate vector "from" into vector
      "to". */
  public Rotf(Vec3f from, Vec3f to) {
    set(from, to);
  }

  /** Re-initialize this quaternion to be the identity quaternion "e"
      (i.e., no rotation) */
  public void init() {
    q0 = 1;
    q1 = q2 = q3 = 0;
  }

  /** Test for "approximate equality" -- performs componentwise test
      to see whether difference between all components is less than
      epsilon. */
  public boolean withinEpsilon(Rotf arg, float epsilon) {
    return ((Math.abs(q0 - arg.q0) < epsilon) &&
            (Math.abs(q1 - arg.q1) < epsilon) &&
            (Math.abs(q2 - arg.q2) < epsilon) &&
            (Math.abs(q3 - arg.q3) < epsilon));
  }

  /** Axis does not need to be normalized but must not be the zero
      vector. Angle is in radians. */
  public void set(Vec3f axis, float angle) {
    float halfTheta = angle / 2.0f;
    q0 = (float) Math.cos(halfTheta);
    float sinHalfTheta = (float) Math.sin(halfTheta);
    Vec3f realAxis = new Vec3f(axis);
    realAxis.normalize();
    q1 = realAxis.x() * sinHalfTheta;
    q2 = realAxis.y() * sinHalfTheta;
    q3 = realAxis.z() * sinHalfTheta;
  }

  public void set(Rotf arg) {
    q0 = arg.q0;
    q1 = arg.q1;
    q2 = arg.q2;
    q3 = arg.q3;
  }

  /** Sets this rotation to that which will rotate vector "from" into
      vector "to". from and to do not have to be the same length. */
  public void set(Vec3f from, Vec3f to) {
    Vec3f axis = from.cross(to);
    if (axis.lengthSquared() < EPSILON) {
      init();
      return;
    }
    float dotp = from.dot(to);
    float denom = from.length() * to.length();
    if (denom < EPSILON) {
      init();
      return;
    }
    dotp /= denom;
    set(axis, (float) Math.acos(dotp));
  }

  /** Returns angle (in radians) and mutates the given vector to be
      the axis. */
  public float get(Vec3f axis) {
    // FIXME: Is this numerically stable? Is there a better way to
    // extract the angle from a quaternion?
    // NOTE: remove (float) to illustrate compiler bug
    float retval = (float) (2.0f * Math.acos(q0));
    axis.set(q1, q2, q3);
    float len = axis.length();
    if (len == 0.0f) {
      axis.set(0, 0, 1);
    } else {
      axis.scale(1.0f / len);
    }
    return retval;
  }

  /** Returns inverse of this rotation; creates new rotation */
  public Rotf inverse() {
    Rotf tmp = new Rotf(this);
    tmp.invert();
    return tmp;
  }

  /** Mutate this quaternion to be its inverse. This is equivalent to
      the conjugate of the quaternion. */
  public void invert() {
    q1 = -q1;
    q2 = -q2;
    q3 = -q3;
  }
  
  /** Length of this quaternion in four-space */
  public float length() {
    return (float) Math.sqrt(lengthSquared());
  }

  /** This dotted with this */
  public float lengthSquared() {
    return (q0 * q0 +
            q1 * q1 +
            q2 * q2 +
            q3 * q3);
  }

  /** Make this quaternion a unit quaternion again. If you are
      composing dozens of quaternions you probably should call this
      periodically to ensure that you have a valid rotation. */
  public void normalize() {
    float len = length();
    q0 /= len;
    q1 /= len;
    q2 /= len;
    q3 /= len;
  }

  /** Returns this * b, in that order; creates new rotation */
  public Rotf times(Rotf b) {
    Rotf tmp = new Rotf();
    tmp.mul(this, b);
    return tmp;
  }

  /** Compose two rotations: this = A * B in that order. NOTE that
      because we assume a column vector representation that this
      implies that a vector rotated by the cumulative rotation will be
      rotated first by B, then A. NOTE: "this" must be different than
      both a and b. */
  public void mul(Rotf a, Rotf b) {
    q0 = (a.q0 * b.q0 - a.q1 * b.q1 -
          a.q2 * b.q2 - a.q3 * b.q3);
    q1 = (a.q0 * b.q1 + a.q1 * b.q0 +
          a.q2 * b.q3 - a.q3 * b.q2);
    q2 = (a.q0 * b.q2 + a.q2 * b.q0 -
          a.q1 * b.q3 + a.q3 * b.q1);
    q3 = (a.q0 * b.q3 + a.q3 * b.q0 +
          a.q1 * b.q2 - a.q2 * b.q1);
  }

  /** Turns this rotation into a 3x3 rotation matrix. NOTE: only
      mutates the upper-left 3x3 of the passed Mat4f. Implementation
      from B. K. P. Horn's <u>Robot Vision</u> textbook. */
  public void toMatrix(Mat4f mat) {
    float q00 = q0 * q0;
    float q11 = q1 * q1;
    float q22 = q2 * q2;
    float q33 = q3 * q3;
    // Diagonal elements
    mat.set(0, 0, q00 + q11 - q22 - q33);
    mat.set(1, 1, q00 - q11 + q22 - q33);
    mat.set(2, 2, q00 - q11 - q22 + q33);
    // 0,1 and 1,0 elements
    float q03 = q0 * q3;
    float q12 = q1 * q2;
    mat.set(0, 1, 2.0f * (q12 - q03));
    mat.set(1, 0, 2.0f * (q03 + q12));
    // 0,2 and 2,0 elements
    float q02 = q0 * q2;
    float q13 = q1 * q3;
    mat.set(0, 2, 2.0f * (q02 + q13));
    mat.set(2, 0, 2.0f * (q13 - q02));
    // 1,2 and 2,1 elements
    float q01 = q0 * q1;
    float q23 = q2 * q3;
    mat.set(1, 2, 2.0f * (q23 - q01));
    mat.set(2, 1, 2.0f * (q01 + q23));
  }

  /** Turns the upper left 3x3 of the passed matrix into a rotation.
      Implementation from Watt and Watt, <u>Advanced Animation and
      Rendering Techniques</u>.
      @see gleem.linalg.Mat4f#getRotation */
  public void fromMatrix(Mat4f mat) {
    // FIXME: Should reimplement to follow Horn's advice of using
    // eigenvector decomposition to handle roundoff error in given
    // matrix.
    
    float tr, s;
    int i, j, k;
  
    tr = mat.get(0, 0) + mat.get(1, 1) + mat.get(2, 2);
    if (tr > 0.0) {
      s = (float) Math.sqrt(tr + 1.0f);
      q0 = s * 0.5f;
      s = 0.5f / s;
      q1 = (mat.get(2, 1) - mat.get(1, 2)) * s;
      q2 = (mat.get(0, 2) - mat.get(2, 0)) * s;
      q3 = (mat.get(1, 0) - mat.get(0, 1)) * s;
    } else {
      i = 0;
      if (mat.get(1, 1) > mat.get(0, 0))
        i = 1;
      if (mat.get(2, 2) > mat.get(i, i))
        i = 2;
      j = (i+1)%3;
      k = (j+1)%3;
      s = (float) Math.sqrt( (mat.get(i, i) - (mat.get(j, j) + mat.get(k, k))) + 1.0f);
      setQ(i+1, s * 0.5f);
      s = 0.5f / s;
      q0 = (mat.get(k, j) - mat.get(j, k)) * s;
      setQ(j+1, (mat.get(j, i) + mat.get(i, j)) * s);
      setQ(k+1, (mat.get(k, i) + mat.get(i, k)) * s);
    }
  }

  /** Rotate a vector by this quaternion. Implementation is from
      Horn's <u>Robot Vision</u>. NOTE: src and dest must be different
      vectors. */
  public void rotateVector(Vec3f src, Vec3f dest) {
    Vec3f qVec = new Vec3f(q1, q2, q3);
    Vec3f qCrossX = qVec.cross(src);
    Vec3f qCrossXCrossQ = qCrossX.cross(qVec);
    qCrossX.scale(2.0f * q0);
    qCrossXCrossQ.scale(-2.0f);
    dest.add(src, qCrossX);
    dest.add(dest, qCrossXCrossQ);
  }

  /** Rotate a vector by this quaternion, returning newly-allocated result. */
  public Vec3f rotateVector(Vec3f src) {
    Vec3f tmp = new Vec3f();
    rotateVector(src, tmp);
    return tmp;
  }

  public String toString() {
    return "(" + q0 + ", " + q1 + ", " + q2 + ", " + q3 + ")";
  }

  private void setQ(int i, float val) {
    switch (i) {
    case 0: q0 = val; break;
    case 1: q1 = val; break;
    case 2: q2 = val; break;
    case 3: q3 = val; break;
    default: throw new IndexOutOfBoundsException();
    }
  }
}