1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/*
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
* MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR
* ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
* DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
* DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
* ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
* SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed or intended for use
* in the design, construction, operation or maintenance of any nuclear
* facility.
*
*/
package net.java.joglutils.msg.math;
/** 2x2 matrix class useful for simple linear algebra. Representation
is (as Mat4f) in row major order and assumes multiplication by
column vectors on the right. */
public class Mat2f {
private float[] data;
/** Creates new matrix initialized to the zero matrix */
public Mat2f() {
data = new float[4];
}
/** Initialize to the identity matrix. */
public void makeIdent() {
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
if (i == j) {
set(i, j, 1.0f);
} else {
set(i, j, 0.0f);
}
}
}
}
/** Gets the (i,j)th element of this matrix, where i is the row
index and j is the column index */
public float get(int i, int j) {
return data[2 * i + j];
}
/** Sets the (i,j)th element of this matrix, where i is the row
index and j is the column index */
public void set(int i, int j, float val) {
data[2 * i + j] = val;
}
/** Set column i (i=[0..1]) to vector v. */
public void setCol(int i, Vec2f v) {
set(0, i, v.x());
set(1, i, v.y());
}
/** Set row i (i=[0..1]) to vector v. */
public void setRow(int i, Vec2f v) {
set(i, 0, v.x());
set(i, 1, v.y());
}
/** Transpose this matrix in place. */
public void transpose() {
float t = get(0, 1);
set(0, 1, get(1, 0));
set(1, 0, t);
}
/** Return the determinant. */
public float determinant() {
return (get(0, 0) * get(1, 1) - get(1, 0) * get(0, 1));
}
/** Full matrix inversion in place. If matrix is singular, returns
false and matrix contents are untouched. If you know the matrix
is orthonormal, you can call transpose() instead. */
public boolean invert() {
float det = determinant();
if (det == 0.0f)
return false;
// Create transpose of cofactor matrix in place
float t = get(0, 0);
set(0, 0, get(1, 1));
set(1, 1, t);
set(0, 1, -get(0, 1));
set(1, 0, -get(1, 0));
// Now divide by determinant
for (int i = 0; i < 4; i++) {
data[i] /= det;
}
return true;
}
/** Multiply a 2D vector by this matrix. NOTE: src and dest must be
different vectors. */
public void xformVec(Vec2f src, Vec2f dest) {
dest.set(get(0, 0) * src.x() +
get(0, 1) * src.y(),
get(1, 0) * src.x() +
get(1, 1) * src.y());
}
/** Returns this * b; creates new matrix */
public Mat2f mul(Mat2f b) {
Mat2f tmp = new Mat2f();
tmp.mul(this, b);
return tmp;
}
/** this = a * b */
public void mul(Mat2f a, Mat2f b) {
for (int rc = 0; rc < 2; rc++)
for (int cc = 0; cc < 2; cc++) {
float tmp = 0.0f;
for (int i = 0; i < 2; i++)
tmp += a.get(rc, i) * b.get(i, cc);
set(rc, cc, tmp);
}
}
public Matf toMatf() {
Matf out = new Matf(2, 2);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
out.set(i, j, get(i, j));
}
}
return out;
}
public String toString() {
String endl = System.getProperty("line.separator");
return "(" +
get(0, 0) + ", " + get(0, 1) + endl +
get(1, 0) + ", " + get(1, 1) + ")";
}
}
|