1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
|
/*
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
* MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR
* ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
* DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
* DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
* ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
* SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed or intended for use
* in the design, construction, operation or maintenance of any nuclear
* facility.
*
*/
package net.java.joglutils.msg.math;
/** A (very incomplete) 4x4 matrix class. Representation assumes
row-major order and multiplication by column vectors on the
right. */
public class Mat4f {
private float[] data;
/** Creates new matrix initialized to the zero matrix */
public Mat4f() {
data = new float[16];
}
/** Creates new matrix initialized to argument's contents */
public Mat4f(Mat4f arg) {
this();
set(arg);
}
/** Sets this matrix to the identity matrix */
public void makeIdent() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (i == j) {
set(i, j, 1.0f);
} else {
set(i, j, 0.0f);
}
}
}
}
/** Sets this matrix to be equivalent to the given one */
public void set(Mat4f arg) {
float[] mine = data;
float[] yours = arg.data;
for (int i = 0; i < mine.length; i++) {
mine[i] = yours[i];
}
}
/** Gets the (i,j)th element of this matrix, where i is the row
index and j is the column index */
public float get(int i, int j) {
return data[4 * i + j];
}
/** Sets the (i,j)th element of this matrix, where i is the row
index and j is the column index */
public void set(int i, int j, float val) {
data[4 * i + j] = val;
}
/** Sets the translation component of this matrix (i.e., the three
top elements of the third column) without touching any of the
other parts of the matrix */
public void setTranslation(Vec3f trans) {
set(0, 3, trans.x());
set(1, 3, trans.y());
set(2, 3, trans.z());
}
/** Sets the rotation component of this matrix (i.e., the upper left
3x3) without touching any of the other parts of the matrix */
public void setRotation(Rotf rot) {
rot.toMatrix(this);
}
/** Sets the upper-left 3x3 of this matrix assuming that the given
x, y, and z vectors form an orthonormal basis */
public void setRotation(Vec3f x, Vec3f y, Vec3f z) {
set(0, 0, x.x());
set(1, 0, x.y());
set(2, 0, x.z());
set(0, 1, y.x());
set(1, 1, y.y());
set(2, 1, y.z());
set(0, 2, z.x());
set(1, 2, z.y());
set(2, 2, z.z());
}
/** Gets the upper left 3x3 of this matrix as a rotation. Currently
does not work if there are scales. Ignores translation
component. */
public void getRotation(Rotf rot) {
rot.fromMatrix(this);
}
/** Sets the elements (0, 0), (1, 1), and (2, 2) with the
appropriate elements of the given three-dimensional scale
vector. Does not perform a full multiplication of the upper-left
3x3; use this with an identity matrix in conjunction with
<code>mul</code> for that. */
public void setScale(Vec3f scale) {
set(0, 0, scale.x());
set(1, 1, scale.y());
set(2, 2, scale.z());
}
/** Inverts this matrix assuming that it represents a rigid
transform (i.e., some combination of rotations and
translations). Assumes column vectors. Algorithm: transposes
upper left 3x3; negates translation in rightmost column and
transforms by inverted rotation. */
public void invertRigid() {
float t;
// Transpose upper left 3x3
t = get(0, 1);
set(0, 1, get(1, 0));
set(1, 0, t);
t = get(0, 2);
set(0, 2, get(2, 0));
set(2, 0, t);
t = get(1, 2);
set(1, 2, get(2, 1));
set(2, 1, t);
// Transform negative translation by this
Vec3f negTrans = new Vec3f(-get(0, 3), -get(1, 3), -get(2, 3));
Vec3f trans = new Vec3f();
xformDir(negTrans, trans);
set(0, 3, trans.x());
set(1, 3, trans.y());
set(2, 3, trans.z());
}
/** Performs general 4x4 matrix inversion.
@throws SingularMatrixException if this matrix is singular (i.e., non-invertible)
*/
public void invert() throws SingularMatrixException {
invertGeneral(this);
}
/** Returns this * b; creates new matrix */
public Mat4f mul(Mat4f b) {
Mat4f tmp = new Mat4f();
tmp.mul(this, b);
return tmp;
}
/** this = a * b */
public void mul(Mat4f a, Mat4f b) {
for (int rc = 0; rc < 4; rc++)
for (int cc = 0; cc < 4; cc++) {
float tmp = 0.0f;
for (int i = 0; i < 4; i++)
tmp += a.get(rc, i) * b.get(i, cc);
set(rc, cc, tmp);
}
}
/** Transpose this matrix in place. */
public void transpose() {
float t;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < i; j++) {
t = get(i, j);
set(i, j, get(j, i));
set(j, i, t);
}
}
}
/** Multiply a 4D vector by this matrix. NOTE: src and dest must be
different vectors. */
public void xformVec(Vec4f src, Vec4f dest) {
for (int rc = 0; rc < 4; rc++) {
float tmp = 0.0f;
for (int cc = 0; cc < 4; cc++) {
tmp += get(rc, cc) * src.get(cc);
}
dest.set(rc, tmp);
}
}
/** Transforms a 3D vector as though it had a homogeneous coordinate
and assuming that this matrix represents only rigid
transformations; i.e., is not a full transformation. NOTE: src
and dest must be different vectors. */
public void xformPt(Vec3f src, Vec3f dest) {
for (int rc = 0; rc < 3; rc++) {
float tmp = 0.0f;
for (int cc = 0; cc < 3; cc++) {
tmp += get(rc, cc) * src.get(cc);
}
tmp += get(rc, 3);
dest.set(rc, tmp);
}
}
/** Transforms src using only the upper left 3x3. NOTE: src and dest
must be different vectors. */
public void xformDir(Vec3f src, Vec3f dest) {
for (int rc = 0; rc < 3; rc++) {
float tmp = 0.0f;
for (int cc = 0; cc < 3; cc++) {
tmp += get(rc, cc) * src.get(cc);
}
dest.set(rc, tmp);
}
}
/** Transforms the given line (origin plus direction) by this
matrix. */
public Line xformLine(Line line) {
Vec3f pt = new Vec3f();
Vec3f dir = new Vec3f();
xformPt(line.getPoint(), pt);
xformDir(line.getDirection(), dir);
return new Line(dir, pt);
}
/** Copies data in column-major (OpenGL format) order into passed
float array, which must have length 16 or greater. */
public void getColumnMajorData(float[] out) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
out[4 * j + i] = get(i, j);
}
}
}
/** Returns the matrix data in row-major format, which is the
opposite of OpenGL's convention. */
public float[] getRowMajorData() {
return data;
}
public Matf toMatf() {
Matf out = new Matf(4, 4);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
out.set(i, j, get(i, j));
}
}
return out;
}
public String toString() {
String endl = System.getProperty("line.separator");
return "(" +
get(0, 0) + ", " + get(0, 1) + ", " + get(0, 2) + ", " + get(0, 3) + endl +
get(1, 0) + ", " + get(1, 1) + ", " + get(1, 2) + ", " + get(1, 3) + endl +
get(2, 0) + ", " + get(2, 1) + ", " + get(2, 2) + ", " + get(2, 3) + endl +
get(3, 0) + ", " + get(3, 1) + ", " + get(3, 2) + ", " + get(3, 3) + ")";
}
//----------------------------------------------------------------------
// Internals only below this point
//
// The following code was borrowed from Java 3D's vecmath implementation
private void invertGeneral(Mat4f m1) {
double temp[] = new double[16];
double result[] = new double[16];
int row_perm[] = new int[4];
int i, r, c;
// Use LU decomposition and backsubstitution code specifically
// for floating-point 4x4 matrices.
// Copy source matrix to t1tmp
temp[0] = m1.get(0, 0);
temp[1] = m1.get(0, 1);
temp[2] = m1.get(0, 2);
temp[3] = m1.get(0, 3);
temp[4] = m1.get(1, 0);
temp[5] = m1.get(1, 1);
temp[6] = m1.get(1, 2);
temp[7] = m1.get(1, 3);
temp[8] = m1.get(2, 0);
temp[9] = m1.get(2, 1);
temp[10] = m1.get(2, 2);
temp[11] = m1.get(2, 3);
temp[12] = m1.get(3, 0);
temp[13] = m1.get(3, 1);
temp[14] = m1.get(3, 2);
temp[15] = m1.get(3, 3);
// Calculate LU decomposition: Is the matrix singular?
if (!luDecomposition(temp, row_perm)) {
// Matrix has no inverse
throw new SingularMatrixException();
}
// Perform back substitution on the identity matrix
for(i=0;i<16;i++) result[i] = 0.0;
result[0] = 1.0; result[5] = 1.0; result[10] = 1.0; result[15] = 1.0;
luBacksubstitution(temp, row_perm, result);
set(0, 0, (float)result[0]);
set(0, 1, (float)result[1]);
set(0, 2, (float)result[2]);
set(0, 3, (float)result[3]);
set(1, 0, (float)result[4]);
set(1, 1, (float)result[5]);
set(1, 2, (float)result[6]);
set(1, 3, (float)result[7]);
set(2, 0, (float)result[8]);
set(2, 1, (float)result[9]);
set(2, 2, (float)result[10]);
set(2, 3, (float)result[11]);
set(3, 0, (float)result[12]);
set(3, 1, (float)result[13]);
set(3, 2, (float)result[14]);
set(3, 3, (float)result[15]);
}
/**
* Given a 4x4 array "matrix0", this function replaces it with the
* LU decomposition of a row-wise permutation of itself. The input
* parameters are "matrix0" and "dimen". The array "matrix0" is also
* an output parameter. The vector "row_perm[4]" is an output
* parameter that contains the row permutations resulting from partial
* pivoting. The output parameter "even_row_xchg" is 1 when the
* number of row exchanges is even, or -1 otherwise. Assumes data
* type is always double.
*
* This function is similar to luDecomposition, except that it
* is tuned specifically for 4x4 matrices.
*
* @return true if the matrix is nonsingular, or false otherwise.
*/
//
// Reference: Press, Flannery, Teukolsky, Vetterling,
// _Numerical_Recipes_in_C_, Cambridge University Press,
// 1988, pp 40-45.
//
static boolean luDecomposition(double[] matrix0,
int[] row_perm) {
double row_scale[] = new double[4];
// Determine implicit scaling information by looping over rows
{
int i, j;
int ptr, rs;
double big, temp;
ptr = 0;
rs = 0;
// For each row ...
i = 4;
while (i-- != 0) {
big = 0.0;
// For each column, find the largest element in the row
j = 4;
while (j-- != 0) {
temp = matrix0[ptr++];
temp = Math.abs(temp);
if (temp > big) {
big = temp;
}
}
// Is the matrix singular?
if (big == 0.0) {
return false;
}
row_scale[rs++] = 1.0 / big;
}
}
{
int j;
int mtx;
mtx = 0;
// For all columns, execute Crout's method
for (j = 0; j < 4; j++) {
int i, imax, k;
int target, p1, p2;
double sum, big, temp;
// Determine elements of upper diagonal matrix U
for (i = 0; i < j; i++) {
target = mtx + (4*i) + j;
sum = matrix0[target];
k = i;
p1 = mtx + (4*i);
p2 = mtx + j;
while (k-- != 0) {
sum -= matrix0[p1] * matrix0[p2];
p1++;
p2 += 4;
}
matrix0[target] = sum;
}
// Search for largest pivot element and calculate
// intermediate elements of lower diagonal matrix L.
big = 0.0;
imax = -1;
for (i = j; i < 4; i++) {
target = mtx + (4*i) + j;
sum = matrix0[target];
k = j;
p1 = mtx + (4*i);
p2 = mtx + j;
while (k-- != 0) {
sum -= matrix0[p1] * matrix0[p2];
p1++;
p2 += 4;
}
matrix0[target] = sum;
// Is this the best pivot so far?
if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
big = temp;
imax = i;
}
}
if (imax < 0) {
throw new RuntimeException("Logic error: imax < 0");
}
// Is a row exchange necessary?
if (j != imax) {
// Yes: exchange rows
k = 4;
p1 = mtx + (4*imax);
p2 = mtx + (4*j);
while (k-- != 0) {
temp = matrix0[p1];
matrix0[p1++] = matrix0[p2];
matrix0[p2++] = temp;
}
// Record change in scale factor
row_scale[imax] = row_scale[j];
}
// Record row permutation
row_perm[j] = imax;
// Is the matrix singular
if (matrix0[(mtx + (4*j) + j)] == 0.0) {
return false;
}
// Divide elements of lower diagonal matrix L by pivot
if (j != (4-1)) {
temp = 1.0 / (matrix0[(mtx + (4*j) + j)]);
target = mtx + (4*(j+1)) + j;
i = 3 - j;
while (i-- != 0) {
matrix0[target] *= temp;
target += 4;
}
}
}
}
return true;
}
/**
* Solves a set of linear equations. The input parameters "matrix1",
* and "row_perm" come from luDecompostionD4x4 and do not change
* here. The parameter "matrix2" is a set of column vectors assembled
* into a 4x4 matrix of floating-point values. The procedure takes each
* column of "matrix2" in turn and treats it as the right-hand side of the
* matrix equation Ax = LUx = b. The solution vector replaces the
* original column of the matrix.
*
* If "matrix2" is the identity matrix, the procedure replaces its contents
* with the inverse of the matrix from which "matrix1" was originally
* derived.
*/
//
// Reference: Press, Flannery, Teukolsky, Vetterling,
// _Numerical_Recipes_in_C_, Cambridge University Press,
// 1988, pp 44-45.
//
static void luBacksubstitution(double[] matrix1,
int[] row_perm,
double[] matrix2) {
int i, ii, ip, j, k;
int rp;
int cv, rv;
// rp = row_perm;
rp = 0;
// For each column vector of matrix2 ...
for (k = 0; k < 4; k++) {
// cv = &(matrix2[0][k]);
cv = k;
ii = -1;
// Forward substitution
for (i = 0; i < 4; i++) {
double sum;
ip = row_perm[rp+i];
sum = matrix2[cv+4*ip];
matrix2[cv+4*ip] = matrix2[cv+4*i];
if (ii >= 0) {
// rv = &(matrix1[i][0]);
rv = i*4;
for (j = ii; j <= i-1; j++) {
sum -= matrix1[rv+j] * matrix2[cv+4*j];
}
}
else if (sum != 0.0) {
ii = i;
}
matrix2[cv+4*i] = sum;
}
// Backsubstitution
// rv = &(matrix1[3][0]);
rv = 3*4;
matrix2[cv+4*3] /= matrix1[rv+3];
rv -= 4;
matrix2[cv+4*2] = (matrix2[cv+4*2] -
matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+2];
rv -= 4;
matrix2[cv+4*1] = (matrix2[cv+4*1] -
matrix1[rv+2] * matrix2[cv+4*2] -
matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+1];
rv -= 4;
matrix2[cv+4*0] = (matrix2[cv+4*0] -
matrix1[rv+1] * matrix2[cv+4*1] -
matrix1[rv+2] * matrix2[cv+4*2] -
matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+0];
}
}
}
|