1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
/*
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
* MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR
* ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
* DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
* DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
* ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
* SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed or intended for use
* in the design, construction, operation or maintenance of any nuclear
* facility.
*
*/
package net.java.joglutils.msg.math;
/** Represents a rotation in 3D space with single-precision
components. Uses a quaternion as the internal representation. */
public class Rotf {
private static float EPSILON = 1.0e-7f;
// Representation is a quaternion. Element 0 is the scalar part (=
// cos(theta/2)), elements 1..3 the imaginary/"vector" part (=
// sin(theta/2) * axis).
private float q0;
private float q1;
private float q2;
private float q3;
/** Default constructor initializes to the identity quaternion */
public Rotf() {
init();
}
public Rotf(Rotf arg) {
set(arg);
}
/** Axis does not need to be normalized but must not be the zero
vector. Angle is in radians. */
public Rotf(Vec3f axis, float angle) {
set(axis, angle);
}
/** Creates a rotation which will rotate vector "from" into vector
"to". */
public Rotf(Vec3f from, Vec3f to) {
set(from, to);
}
/** Re-initialize this quaternion to be the identity quaternion "e"
(i.e., no rotation) */
public void init() {
q0 = 1;
q1 = q2 = q3 = 0;
}
/** Test for "approximate equality" -- performs componentwise test
to see whether difference between all components is less than
epsilon. */
public boolean withinEpsilon(Rotf arg, float epsilon) {
return ((Math.abs(q0 - arg.q0) < epsilon) &&
(Math.abs(q1 - arg.q1) < epsilon) &&
(Math.abs(q2 - arg.q2) < epsilon) &&
(Math.abs(q3 - arg.q3) < epsilon));
}
/** Axis does not need to be normalized but must not be the zero
vector. Angle is in radians. */
public void set(Vec3f axis, float angle) {
float halfTheta = angle / 2.0f;
q0 = (float) Math.cos(halfTheta);
float sinHalfTheta = (float) Math.sin(halfTheta);
Vec3f realAxis = new Vec3f(axis);
realAxis.normalize();
q1 = realAxis.x() * sinHalfTheta;
q2 = realAxis.y() * sinHalfTheta;
q3 = realAxis.z() * sinHalfTheta;
}
/** Sets this rotation to the contents of the passed one. */
public void set(Rotf arg) {
q0 = arg.q0;
q1 = arg.q1;
q2 = arg.q2;
q3 = arg.q3;
}
/** Sets this rotation to that which will rotate vector "from" into
vector "to". from and to do not have to be the same length. */
public void set(Vec3f from, Vec3f to) {
Vec3f axis = from.cross(to);
if (axis.lengthSquared() < EPSILON) {
init();
return;
}
float dotp = from.dot(to);
float denom = from.length() * to.length();
if (denom < EPSILON) {
init();
return;
}
dotp /= denom;
set(axis, (float) Math.acos(dotp));
}
/** Returns angle (in radians) and mutates the given vector to be
the axis. */
public float get(Vec3f axis) {
// FIXME: Is this numerically stable? Is there a better way to
// extract the angle from a quaternion?
// NOTE: remove (float) to illustrate compiler bug
float retval = (float) (2.0f * Math.acos(q0));
axis.set(q1, q2, q3);
float len = axis.length();
if (len == 0.0f) {
axis.set(0, 0, 1);
} else {
axis.scale(1.0f / len);
}
return retval;
}
/** Returns inverse of this rotation; creates a new rotation. */
public Rotf inverse() {
Rotf tmp = new Rotf(this);
tmp.invert();
return tmp;
}
/** Mutate this quaternion to be its inverse. This is equivalent to
the conjugate of the quaternion. */
public void invert() {
q1 = -q1;
q2 = -q2;
q3 = -q3;
}
/** Returns the length of this quaternion in four-space. */
public float length() {
return (float) Math.sqrt(lengthSquared());
}
/** This dotted with this */
public float lengthSquared() {
return (q0 * q0 +
q1 * q1 +
q2 * q2 +
q3 * q3);
}
/** Make this quaternion a unit quaternion again. If you are
composing dozens of quaternions you probably should call this
periodically to ensure that you have a valid rotation. */
public void normalize() {
float len = length();
q0 /= len;
q1 /= len;
q2 /= len;
q3 /= len;
}
/** Returns this * b, in that order; creates new rotation */
public Rotf times(Rotf b) {
Rotf tmp = new Rotf();
tmp.mul(this, b);
return tmp;
}
/** Compose two rotations: this = A * B in that order. NOTE that
because we assume a column vector representation that this
implies that a vector rotated by the cumulative rotation will be
rotated first by B, then A. NOTE: "this" must be different than
both a and b. */
public void mul(Rotf a, Rotf b) {
q0 = (a.q0 * b.q0 - a.q1 * b.q1 -
a.q2 * b.q2 - a.q3 * b.q3);
q1 = (a.q0 * b.q1 + a.q1 * b.q0 +
a.q2 * b.q3 - a.q3 * b.q2);
q2 = (a.q0 * b.q2 + a.q2 * b.q0 -
a.q1 * b.q3 + a.q3 * b.q1);
q3 = (a.q0 * b.q3 + a.q3 * b.q0 +
a.q1 * b.q2 - a.q2 * b.q1);
}
/** Turns this rotation into a 3x3 rotation matrix. NOTE: only
mutates the upper-left 3x3 of the passed Mat4f. Implementation
from B. K. P. Horn's <u>Robot Vision</u> textbook. */
public void toMatrix(Mat4f mat) {
float q00 = q0 * q0;
float q11 = q1 * q1;
float q22 = q2 * q2;
float q33 = q3 * q3;
// Diagonal elements
mat.set(0, 0, q00 + q11 - q22 - q33);
mat.set(1, 1, q00 - q11 + q22 - q33);
mat.set(2, 2, q00 - q11 - q22 + q33);
// 0,1 and 1,0 elements
float q03 = q0 * q3;
float q12 = q1 * q2;
mat.set(0, 1, 2.0f * (q12 - q03));
mat.set(1, 0, 2.0f * (q03 + q12));
// 0,2 and 2,0 elements
float q02 = q0 * q2;
float q13 = q1 * q3;
mat.set(0, 2, 2.0f * (q02 + q13));
mat.set(2, 0, 2.0f * (q13 - q02));
// 1,2 and 2,1 elements
float q01 = q0 * q1;
float q23 = q2 * q3;
mat.set(1, 2, 2.0f * (q23 - q01));
mat.set(2, 1, 2.0f * (q01 + q23));
}
/** Turns the upper left 3x3 of the passed matrix into a rotation.
Implementation from Watt and Watt, <u>Advanced Animation and
Rendering Techniques</u>.
@see Mat4f#getRotation */
public void fromMatrix(Mat4f mat) {
// FIXME: Should reimplement to follow Horn's advice of using
// eigenvector decomposition to handle roundoff error in given
// matrix.
float tr, s;
int i, j, k;
tr = mat.get(0, 0) + mat.get(1, 1) + mat.get(2, 2);
if (tr > 0.0) {
s = (float) Math.sqrt(tr + 1.0f);
q0 = s * 0.5f;
s = 0.5f / s;
q1 = (mat.get(2, 1) - mat.get(1, 2)) * s;
q2 = (mat.get(0, 2) - mat.get(2, 0)) * s;
q3 = (mat.get(1, 0) - mat.get(0, 1)) * s;
} else {
i = 0;
if (mat.get(1, 1) > mat.get(0, 0))
i = 1;
if (mat.get(2, 2) > mat.get(i, i))
i = 2;
j = (i+1)%3;
k = (j+1)%3;
s = (float) Math.sqrt( (mat.get(i, i) - (mat.get(j, j) + mat.get(k, k))) + 1.0f);
setQ(i+1, s * 0.5f);
s = 0.5f / s;
q0 = (mat.get(k, j) - mat.get(j, k)) * s;
setQ(j+1, (mat.get(j, i) + mat.get(i, j)) * s);
setQ(k+1, (mat.get(k, i) + mat.get(i, k)) * s);
}
}
/** Rotate a vector by this quaternion. Implementation is from
Horn's <u>Robot Vision</u>. NOTE: src and dest must be different
vectors. */
public void rotateVector(Vec3f src, Vec3f dest) {
Vec3f qVec = new Vec3f(q1, q2, q3);
Vec3f qCrossX = qVec.cross(src);
Vec3f qCrossXCrossQ = qCrossX.cross(qVec);
qCrossX.scale(2.0f * q0);
qCrossXCrossQ.scale(-2.0f);
dest.add(src, qCrossX);
dest.add(dest, qCrossXCrossQ);
}
/** Rotate a vector by this quaternion, returning newly-allocated result. */
public Vec3f rotateVector(Vec3f src) {
Vec3f tmp = new Vec3f();
rotateVector(src, tmp);
return tmp;
}
public String toString() {
return "(" + q0 + ", " + q1 + ", " + q2 + ", " + q3 + ")";
}
private void setQ(int i, float val) {
switch (i) {
case 0: q0 = val; break;
case 1: q1 = val; break;
case 2: q2 = val; break;
case 3: q3 = val; break;
default: throw new IndexOutOfBoundsException();
}
}
}
|