1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
* MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR
* ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
* DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
* DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
* ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
* SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed or intended for use
* in the design, construction, operation or maintenance of any nuclear
* facility.
*
*/
package net.java.joglutils.msg.nodes;
import net.java.joglutils.msg.actions.Action;
import net.java.joglutils.msg.actions.GLRenderAction;
import net.java.joglutils.msg.actions.RayPickAction;
import net.java.joglutils.msg.elements.GLModelMatrixElement;
import net.java.joglutils.msg.elements.GLProjectionMatrixElement;
import net.java.joglutils.msg.elements.GLViewingMatrixElement;
import net.java.joglutils.msg.elements.ModelMatrixElement;
import net.java.joglutils.msg.elements.ProjectionMatrixElement;
import net.java.joglutils.msg.elements.ViewingMatrixElement;
import net.java.joglutils.msg.math.Line;
import net.java.joglutils.msg.math.Mat4f;
import net.java.joglutils.msg.math.Rotf;
import net.java.joglutils.msg.math.SingularMatrixException;
import net.java.joglutils.msg.math.Vec2f;
import net.java.joglutils.msg.math.Vec3f;
import net.java.joglutils.msg.math.Vec4f;
/** Represents a camera which is used to view the scene. The camera
should be added to the scene graph before the geometry it is
intended to view. <P>
The camera's default parameters are a position at (0, 0, 1),
facing down the negative Z axis with the Y axis up, an aspect
ratio of 1.0, a near distance of 1.0, a far distance of 100.0, and
a focal distance of 10.0.
*/
public abstract class Camera extends Node {
private Vec3f position;
private Rotf orientation;
private float aspectRatio = 1.0f;
private float nearDistance = 1.0f;
private float farDistance = 100.0f;
private float focalDistance = 10.0f;
protected boolean projDirty;
protected boolean viewDirty;
protected Mat4f projMatrix;
protected Mat4f viewMatrix;
static {
// Enable the elements this node affects for known actions
// Note that all of these elements are interdependent
GLModelMatrixElement .enable(GLRenderAction.getDefaultState());
GLProjectionMatrixElement .enable(GLRenderAction.getDefaultState());
GLViewingMatrixElement .enable(GLRenderAction.getDefaultState());
ModelMatrixElement .enable(RayPickAction.getDefaultState());
ProjectionMatrixElement.enable(RayPickAction.getDefaultState());
ViewingMatrixElement .enable(RayPickAction.getDefaultState());
}
public Camera() {
position = new Vec3f(0, 0, 1);
orientation = new Rotf();
projMatrix = new Mat4f();
viewMatrix = new Mat4f();
projDirty = true;
viewDirty = true;
}
/** Sets the position of the camera. */
public void setPosition(Vec3f position) {
this.position.set(position);
viewDirty = true;
}
/** Returns the position of the camera. */
public Vec3f getPosition() {
return position;
}
/** Sets the orientation of the camera. */
public void setOrientation(Rotf orientation) {
this.orientation.set(orientation);
viewDirty = true;
}
/** Returns the orientation of the camera. */
public Rotf getOrientation() {
return orientation;
}
/** Sets the aspect ratio of the camera -- the width of the viewport
divided by the height of the viewport. */
public void setAspectRatio(float aspectRatio) {
if (aspectRatio == this.aspectRatio)
return;
this.aspectRatio = aspectRatio;
projDirty = true;
}
/** Returns the aspect ratio of the camera -- the width of the
viewport divided by the height of the viewport. */
public float getAspectRatio() {
return aspectRatio;
}
/** Sets the distance from the eye point to the near clipping plane. */
public void setNearDistance(float nearDistance) {
this.nearDistance = nearDistance;
projDirty = true;
}
/** Returns the distance from the eye point to the near clipping plane. */
public float getNearDistance() {
return nearDistance;
}
/** Sets the distance from the eye point to the far clipping plane. */
public void setFarDistance(float farDistance) {
this.farDistance = farDistance;
projDirty = true;
}
/** Returns the distance from the eye point to the far clipping plane. */
public float getFarDistance() {
return farDistance;
}
/** Sets the distance from the eye point to the focal point of the
scene. This is only used for mouse-based interaction with the
scene and is not factored in to the rendering process. */
public void setFocalDistance(float focalDistance) {
this.focalDistance = focalDistance;
projDirty = true;
}
/** Returns the distance from the eye point to the focal point of
the scene. This is only used for mouse-based interaction with
the scene and is not factored in to the rendering process. */
public float getFocalDistance() {
return focalDistance;
}
/** Returns the viewing matrix associated with this camera's parameters. */
public Mat4f getViewingMatrix() {
if (viewDirty) {
viewMatrix.makeIdent();
viewDirty = false;
viewMatrix.setRotation(getOrientation());
viewMatrix.setTranslation(getPosition());
viewMatrix.invertRigid();
}
return viewMatrix;
}
/** Returns the projection matrix associated with this camera's parameters. */
public abstract Mat4f getProjectionMatrix();
/** Un-projects the given on-screen point to a line in 3D space
which can be used for picking or other operations. The x and y
coordinates of the point must be in normalized coordinates,
where (0, 0) is the lower-left corner of the viewport and (1, 1)
is the upper-right. Allocates new storage for the returned
Line. */
public Line unproject(Vec2f point) {
Line line = new Line();
unproject(point, line);
return line;
}
/** Un-projects the given on-screen point in to the given line in 3D
space (in world coordinates) which can be used for picking or
other operations. The x and y coordinates of the point must be
in normalized coordinates, where (0, 0) is the lower-left corner
of the viewport and (1, 1) is the upper-right. */
public void unproject(Vec2f point, Line line) throws SingularMatrixException {
// First, we are going to compute the 3D point which corresponds
// to the given point on the near plane. Map the screen
// coordinates to the (-1, 1) range. Note that because the camera
// points down the -Z axis, we use as the initial Z coordinate of
// the 3D point we need to unproject the negation of the near
// distance.
Vec4f pt3d = new Vec4f(2 * point.x() - 1,
2 * point.y() - 1,
-getNearDistance(),
1);
// Compute the cumulative view and projection matrices
Mat4f mat = new Mat4f();
mat.mul(getProjectionMatrix(), getViewingMatrix());
// Compute the inverse of this matrix
mat.invert();
// Multiply
Vec4f unproj = new Vec4f();
mat.xformVec(pt3d, unproj);
if (unproj.w() == 0) {
// FIXME: is this the right exception to throw in this case?
throw new SingularMatrixException();
}
float ooW = 1.0f / unproj.w();
Vec3f to = new Vec3f(unproj.x() * ooW,
unproj.y() * ooW,
unproj.z() * ooW);
Vec3f from = getRayStartPoint(point, to);
Vec3f dir = to.minus(from);
// System.err.println("unprojected point: " + to);
// System.err.println("unprojected dir : " + dir);
line.setPoint(from);
line.setDirection(dir);
}
/** Computes the start point of a ray for picking, given a point in
normalized screen coordinates ((0, 0) to (1, 1)) and a 3D point
which that point unprojects to. */
protected abstract Vec3f getRayStartPoint(Vec2f point, Vec3f unprojectedPoint);
public void doAction(Action action) {
if (ViewingMatrixElement.isEnabled(action.getState())) {
ViewingMatrixElement.set(action.getState(), getViewingMatrix());
}
if (ProjectionMatrixElement.isEnabled(action.getState())) {
ProjectionMatrixElement.set(action.getState(), getProjectionMatrix());
}
}
public void rayPick(RayPickAction action) {
doAction(action);
action.recomputeRay(this);
}
}
|