aboutsummaryrefslogtreecommitdiffstats
path: root/src/classes/com/sun/opengl/impl/tessellator/Geom.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/classes/com/sun/opengl/impl/tessellator/Geom.java')
-rw-r--r--src/classes/com/sun/opengl/impl/tessellator/Geom.java318
1 files changed, 0 insertions, 318 deletions
diff --git a/src/classes/com/sun/opengl/impl/tessellator/Geom.java b/src/classes/com/sun/opengl/impl/tessellator/Geom.java
deleted file mode 100644
index 11e17d535..000000000
--- a/src/classes/com/sun/opengl/impl/tessellator/Geom.java
+++ /dev/null
@@ -1,318 +0,0 @@
-/*
-* Portions Copyright (C) 2003-2006 Sun Microsystems, Inc.
-* All rights reserved.
-*/
-
-/*
-** License Applicability. Except to the extent portions of this file are
-** made subject to an alternative license as permitted in the SGI Free
-** Software License B, Version 1.1 (the "License"), the contents of this
-** file are subject only to the provisions of the License. You may not use
-** this file except in compliance with the License. You may obtain a copy
-** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
-** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
-**
-** http://oss.sgi.com/projects/FreeB
-**
-** Note that, as provided in the License, the Software is distributed on an
-** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
-** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
-** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
-** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
-**
-** NOTE: The Original Code (as defined below) has been licensed to Sun
-** Microsystems, Inc. ("Sun") under the SGI Free Software License B
-** (Version 1.1), shown above ("SGI License"). Pursuant to Section
-** 3.2(3) of the SGI License, Sun is distributing the Covered Code to
-** you under an alternative license ("Alternative License"). This
-** Alternative License includes all of the provisions of the SGI License
-** except that Section 2.2 and 11 are omitted. Any differences between
-** the Alternative License and the SGI License are offered solely by Sun
-** and not by SGI.
-**
-** Original Code. The Original Code is: OpenGL Sample Implementation,
-** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
-** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
-** Copyright in any portions created by third parties is as indicated
-** elsewhere herein. All Rights Reserved.
-**
-** Additional Notice Provisions: The application programming interfaces
-** established by SGI in conjunction with the Original Code are The
-** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
-** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
-** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
-** Window System(R) (Version 1.3), released October 19, 1998. This software
-** was created using the OpenGL(R) version 1.2.1 Sample Implementation
-** published by SGI, but has not been independently verified as being
-** compliant with the OpenGL(R) version 1.2.1 Specification.
-**
-** Author: Eric Veach, July 1994
-** Java Port: Pepijn Van Eeckhoudt, July 2003
-** Java Port: Nathan Parker Burg, August 2003
-*/
-package com.sun.opengl.impl.tessellator;
-
-class Geom {
- private Geom() {
- }
-
- /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
- * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
- * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
- * If uw is vertical (and thus passes thru v), the result is zero.
- *
- * The calculation is extremely accurate and stable, even when v
- * is very close to u or w. In particular if we set v->t = 0 and
- * let r be the negated result (this evaluates (uw)(v->s)), then
- * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
- */
- static double EdgeEval(GLUvertex u, GLUvertex v, GLUvertex w) {
- double gapL, gapR;
-
- assert (VertLeq(u, v) && VertLeq(v, w));
-
- gapL = v.s - u.s;
- gapR = w.s - v.s;
-
- if (gapL + gapR > 0) {
- if (gapL < gapR) {
- return (v.t - u.t) + (u.t - w.t) * (gapL / (gapL + gapR));
- } else {
- return (v.t - w.t) + (w.t - u.t) * (gapR / (gapL + gapR));
- }
- }
- /* vertical line */
- return 0;
- }
-
- static double EdgeSign(GLUvertex u, GLUvertex v, GLUvertex w) {
- double gapL, gapR;
-
- assert (VertLeq(u, v) && VertLeq(v, w));
-
- gapL = v.s - u.s;
- gapR = w.s - v.s;
-
- if (gapL + gapR > 0) {
- return (v.t - w.t) * gapL + (v.t - u.t) * gapR;
- }
- /* vertical line */
- return 0;
- }
-
-
- /***********************************************************************
- * Define versions of EdgeSign, EdgeEval with s and t transposed.
- */
-
- static double TransEval(GLUvertex u, GLUvertex v, GLUvertex w) {
- /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
- * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
- * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
- * If uw is vertical (and thus passes thru v), the result is zero.
- *
- * The calculation is extremely accurate and stable, even when v
- * is very close to u or w. In particular if we set v->s = 0 and
- * let r be the negated result (this evaluates (uw)(v->t)), then
- * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
- */
- double gapL, gapR;
-
- assert (TransLeq(u, v) && TransLeq(v, w));
-
- gapL = v.t - u.t;
- gapR = w.t - v.t;
-
- if (gapL + gapR > 0) {
- if (gapL < gapR) {
- return (v.s - u.s) + (u.s - w.s) * (gapL / (gapL + gapR));
- } else {
- return (v.s - w.s) + (w.s - u.s) * (gapR / (gapL + gapR));
- }
- }
- /* vertical line */
- return 0;
- }
-
- static double TransSign(GLUvertex u, GLUvertex v, GLUvertex w) {
- /* Returns a number whose sign matches TransEval(u,v,w) but which
- * is cheaper to evaluate. Returns > 0, == 0 , or < 0
- * as v is above, on, or below the edge uw.
- */
- double gapL, gapR;
-
- assert (TransLeq(u, v) && TransLeq(v, w));
-
- gapL = v.t - u.t;
- gapR = w.t - v.t;
-
- if (gapL + gapR > 0) {
- return (v.s - w.s) * gapL + (v.s - u.s) * gapR;
- }
- /* vertical line */
- return 0;
- }
-
-
- static boolean VertCCW(GLUvertex u, GLUvertex v, GLUvertex w) {
- /* For almost-degenerate situations, the results are not reliable.
- * Unless the floating-point arithmetic can be performed without
- * rounding errors, *any* implementation will give incorrect results
- * on some degenerate inputs, so the client must have some way to
- * handle this situation.
- */
- return (u.s * (v.t - w.t) + v.s * (w.t - u.t) + w.s * (u.t - v.t)) >= 0;
- }
-
-/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
- * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
- * this in the rare case that one argument is slightly negative.
- * The implementation is extremely stable numerically.
- * In particular it guarantees that the result r satisfies
- * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
- * even when a and b differ greatly in magnitude.
- */
- static double Interpolate(double a, double x, double b, double y) {
- a = (a < 0) ? 0 : a;
- b = (b < 0) ? 0 : b;
- if (a <= b) {
- if (b == 0) {
- return (x + y) / 2.0;
- } else {
- return (x + (y - x) * (a / (a + b)));
- }
- } else {
- return (y + (x - y) * (b / (a + b)));
- }
- }
-
- static void EdgeIntersect(GLUvertex o1, GLUvertex d1,
- GLUvertex o2, GLUvertex d2,
- GLUvertex v)
-/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
- * The computed point is guaranteed to lie in the intersection of the
- * bounding rectangles defined by each edge.
- */ {
- double z1, z2;
-
- /* This is certainly not the most efficient way to find the intersection
- * of two line segments, but it is very numerically stable.
- *
- * Strategy: find the two middle vertices in the VertLeq ordering,
- * and interpolate the intersection s-value from these. Then repeat
- * using the TransLeq ordering to find the intersection t-value.
- */
-
- if (!VertLeq(o1, d1)) {
- GLUvertex temp = o1;
- o1 = d1;
- d1 = temp;
- }
- if (!VertLeq(o2, d2)) {
- GLUvertex temp = o2;
- o2 = d2;
- d2 = temp;
- }
- if (!VertLeq(o1, o2)) {
- GLUvertex temp = o1;
- o1 = o2;
- o2 = temp;
- temp = d1;
- d1 = d2;
- d2 = temp;
- }
-
- if (!VertLeq(o2, d1)) {
- /* Technically, no intersection -- do our best */
- v.s = (o2.s + d1.s) / 2.0;
- } else if (VertLeq(d1, d2)) {
- /* Interpolate between o2 and d1 */
- z1 = EdgeEval(o1, o2, d1);
- z2 = EdgeEval(o2, d1, d2);
- if (z1 + z2 < 0) {
- z1 = -z1;
- z2 = -z2;
- }
- v.s = Interpolate(z1, o2.s, z2, d1.s);
- } else {
- /* Interpolate between o2 and d2 */
- z1 = EdgeSign(o1, o2, d1);
- z2 = -EdgeSign(o1, d2, d1);
- if (z1 + z2 < 0) {
- z1 = -z1;
- z2 = -z2;
- }
- v.s = Interpolate(z1, o2.s, z2, d2.s);
- }
-
- /* Now repeat the process for t */
-
- if (!TransLeq(o1, d1)) {
- GLUvertex temp = o1;
- o1 = d1;
- d1 = temp;
- }
- if (!TransLeq(o2, d2)) {
- GLUvertex temp = o2;
- o2 = d2;
- d2 = temp;
- }
- if (!TransLeq(o1, o2)) {
- GLUvertex temp = o2;
- o2 = o1;
- o1 = temp;
- temp = d2;
- d2 = d1;
- d1 = temp;
- }
-
- if (!TransLeq(o2, d1)) {
- /* Technically, no intersection -- do our best */
- v.t = (o2.t + d1.t) / 2.0;
- } else if (TransLeq(d1, d2)) {
- /* Interpolate between o2 and d1 */
- z1 = TransEval(o1, o2, d1);
- z2 = TransEval(o2, d1, d2);
- if (z1 + z2 < 0) {
- z1 = -z1;
- z2 = -z2;
- }
- v.t = Interpolate(z1, o2.t, z2, d1.t);
- } else {
- /* Interpolate between o2 and d2 */
- z1 = TransSign(o1, o2, d1);
- z2 = -TransSign(o1, d2, d1);
- if (z1 + z2 < 0) {
- z1 = -z1;
- z2 = -z2;
- }
- v.t = Interpolate(z1, o2.t, z2, d2.t);
- }
- }
-
- static boolean VertEq(GLUvertex u, GLUvertex v) {
- return u.s == v.s && u.t == v.t;
- }
-
- static boolean VertLeq(GLUvertex u, GLUvertex v) {
- return u.s < v.s || (u.s == v.s && u.t <= v.t);
- }
-
-/* Versions of VertLeq, EdgeSign, EdgeEval with s and t transposed. */
-
- static boolean TransLeq(GLUvertex u, GLUvertex v) {
- return u.t < v.t || (u.t == v.t && u.s <= v.s);
- }
-
- static boolean EdgeGoesLeft(GLUhalfEdge e) {
- return VertLeq(e.Sym.Org, e.Org);
- }
-
- static boolean EdgeGoesRight(GLUhalfEdge e) {
- return VertLeq(e.Org, e.Sym.Org);
- }
-
- static double VertL1dist(GLUvertex u, GLUvertex v) {
- return Math.abs(u.s - v.s) + Math.abs(u.t - v.t);
- }
-}