aboutsummaryrefslogtreecommitdiffstats
path: root/src/classes/com/sun/opengl/impl/tessellator/Sweep.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/classes/com/sun/opengl/impl/tessellator/Sweep.java')
-rw-r--r--src/classes/com/sun/opengl/impl/tessellator/Sweep.java1353
1 files changed, 0 insertions, 1353 deletions
diff --git a/src/classes/com/sun/opengl/impl/tessellator/Sweep.java b/src/classes/com/sun/opengl/impl/tessellator/Sweep.java
deleted file mode 100644
index 105328d87..000000000
--- a/src/classes/com/sun/opengl/impl/tessellator/Sweep.java
+++ /dev/null
@@ -1,1353 +0,0 @@
-/*
-* Portions Copyright (C) 2003-2006 Sun Microsystems, Inc.
-* All rights reserved.
-*/
-
-/*
-** License Applicability. Except to the extent portions of this file are
-** made subject to an alternative license as permitted in the SGI Free
-** Software License B, Version 1.1 (the "License"), the contents of this
-** file are subject only to the provisions of the License. You may not use
-** this file except in compliance with the License. You may obtain a copy
-** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
-** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
-**
-** http://oss.sgi.com/projects/FreeB
-**
-** Note that, as provided in the License, the Software is distributed on an
-** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
-** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
-** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
-** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
-**
-** NOTE: The Original Code (as defined below) has been licensed to Sun
-** Microsystems, Inc. ("Sun") under the SGI Free Software License B
-** (Version 1.1), shown above ("SGI License"). Pursuant to Section
-** 3.2(3) of the SGI License, Sun is distributing the Covered Code to
-** you under an alternative license ("Alternative License"). This
-** Alternative License includes all of the provisions of the SGI License
-** except that Section 2.2 and 11 are omitted. Any differences between
-** the Alternative License and the SGI License are offered solely by Sun
-** and not by SGI.
-**
-** Original Code. The Original Code is: OpenGL Sample Implementation,
-** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
-** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
-** Copyright in any portions created by third parties is as indicated
-** elsewhere herein. All Rights Reserved.
-**
-** Additional Notice Provisions: The application programming interfaces
-** established by SGI in conjunction with the Original Code are The
-** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
-** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
-** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
-** Window System(R) (Version 1.3), released October 19, 1998. This software
-** was created using the OpenGL(R) version 1.2.1 Sample Implementation
-** published by SGI, but has not been independently verified as being
-** compliant with the OpenGL(R) version 1.2.1 Specification.
-**
-** Author: Eric Veach, July 1994
-** Java Port: Pepijn Van Eeckhoudt, July 2003
-** Java Port: Nathan Parker Burg, August 2003
-*/
-package com.sun.opengl.impl.glu.tessellator;
-
-import javax.media.opengl.*;
-import javax.media.opengl.glu.*;
-
-class Sweep {
- private Sweep() {
- }
-
-// #ifdef FOR_TRITE_TEST_PROGRAM
-// extern void DebugEvent( GLUtessellator *tess );
-// #else
- private static void DebugEvent(GLUtessellatorImpl tess) {
-
- }
-// #endif
-
-/*
- * Invariants for the Edge Dictionary.
- * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
- * at any valid location of the sweep event
- * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
- * share a common endpoint
- * - for each e, e.Dst has been processed, but not e.Org
- * - each edge e satisfies VertLeq(e.Dst,event) && VertLeq(event,e.Org)
- * where "event" is the current sweep line event.
- * - no edge e has zero length
- *
- * Invariants for the Mesh (the processed portion).
- * - the portion of the mesh left of the sweep line is a planar graph,
- * ie. there is *some* way to embed it in the plane
- * - no processed edge has zero length
- * - no two processed vertices have identical coordinates
- * - each "inside" region is monotone, ie. can be broken into two chains
- * of monotonically increasing vertices according to VertLeq(v1,v2)
- * - a non-invariant: these chains may intersect (very slightly)
- *
- * Invariants for the Sweep.
- * - if none of the edges incident to the event vertex have an activeRegion
- * (ie. none of these edges are in the edge dictionary), then the vertex
- * has only right-going edges.
- * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
- * by ConnectRightVertex), then it is the only right-going edge from
- * its associated vertex. (This says that these edges exist only
- * when it is necessary.)
- */
-
-/* When we merge two edges into one, we need to compute the combined
- * winding of the new edge.
- */
- private static void AddWinding(GLUhalfEdge eDst, GLUhalfEdge eSrc) {
- eDst.winding += eSrc.winding;
- eDst.Sym.winding += eSrc.Sym.winding;
- }
-
-
- private static ActiveRegion RegionBelow(ActiveRegion r) {
- return ((ActiveRegion) Dict.dictKey(Dict.dictPred(r.nodeUp)));
- }
-
- private static ActiveRegion RegionAbove(ActiveRegion r) {
- return ((ActiveRegion) Dict.dictKey(Dict.dictSucc(r.nodeUp)));
- }
-
- static boolean EdgeLeq(GLUtessellatorImpl tess, ActiveRegion reg1, ActiveRegion reg2)
-/*
- * Both edges must be directed from right to left (this is the canonical
- * direction for the upper edge of each region).
- *
- * The strategy is to evaluate a "t" value for each edge at the
- * current sweep line position, given by tess.event. The calculations
- * are designed to be very stable, but of course they are not perfect.
- *
- * Special case: if both edge destinations are at the sweep event,
- * we sort the edges by slope (they would otherwise compare equally).
- */ {
- GLUvertex event = tess.event;
- GLUhalfEdge e1, e2;
- double t1, t2;
-
- e1 = reg1.eUp;
- e2 = reg2.eUp;
-
- if (e1.Sym.Org == event) {
- if (e2.Sym.Org == event) {
- /* Two edges right of the sweep line which meet at the sweep event.
- * Sort them by slope.
- */
- if (Geom.VertLeq(e1.Org, e2.Org)) {
- return Geom.EdgeSign(e2.Sym.Org, e1.Org, e2.Org) <= 0;
- }
- return Geom.EdgeSign(e1.Sym.Org, e2.Org, e1.Org) >= 0;
- }
- return Geom.EdgeSign(e2.Sym.Org, event, e2.Org) <= 0;
- }
- if (e2.Sym.Org == event) {
- return Geom.EdgeSign(e1.Sym.Org, event, e1.Org) >= 0;
- }
-
- /* General case - compute signed distance *from* e1, e2 to event */
- t1 = Geom.EdgeEval(e1.Sym.Org, event, e1.Org);
- t2 = Geom.EdgeEval(e2.Sym.Org, event, e2.Org);
- return (t1 >= t2);
- }
-
-
- static void DeleteRegion(GLUtessellatorImpl tess, ActiveRegion reg) {
- if (reg.fixUpperEdge) {
- /* It was created with zero winding number, so it better be
- * deleted with zero winding number (ie. it better not get merged
- * with a real edge).
- */
- assert (reg.eUp.winding == 0);
- }
- reg.eUp.activeRegion = null;
- Dict.dictDelete(tess.dict, reg.nodeUp); /* __gl_dictListDelete */
- }
-
-
- static boolean FixUpperEdge(ActiveRegion reg, GLUhalfEdge newEdge)
-/*
- * Replace an upper edge which needs fixing (see ConnectRightVertex).
- */ {
- assert (reg.fixUpperEdge);
- if (!Mesh.__gl_meshDelete(reg.eUp)) return false;
- reg.fixUpperEdge = false;
- reg.eUp = newEdge;
- newEdge.activeRegion = reg;
-
- return true;
- }
-
- static ActiveRegion TopLeftRegion(ActiveRegion reg) {
- GLUvertex org = reg.eUp.Org;
- GLUhalfEdge e;
-
- /* Find the region above the uppermost edge with the same origin */
- do {
- reg = RegionAbove(reg);
- } while (reg.eUp.Org == org);
-
- /* If the edge above was a temporary edge introduced by ConnectRightVertex,
- * now is the time to fix it.
- */
- if (reg.fixUpperEdge) {
- e = Mesh.__gl_meshConnect(RegionBelow(reg).eUp.Sym, reg.eUp.Lnext);
- if (e == null) return null;
- if (!FixUpperEdge(reg, e)) return null;
- reg = RegionAbove(reg);
- }
- return reg;
- }
-
- static ActiveRegion TopRightRegion(ActiveRegion reg) {
- GLUvertex dst = reg.eUp.Sym.Org;
-
- /* Find the region above the uppermost edge with the same destination */
- do {
- reg = RegionAbove(reg);
- } while (reg.eUp.Sym.Org == dst);
- return reg;
- }
-
- static ActiveRegion AddRegionBelow(GLUtessellatorImpl tess,
- ActiveRegion regAbove,
- GLUhalfEdge eNewUp)
-/*
- * Add a new active region to the sweep line, *somewhere* below "regAbove"
- * (according to where the new edge belongs in the sweep-line dictionary).
- * The upper edge of the new region will be "eNewUp".
- * Winding number and "inside" flag are not updated.
- */ {
- ActiveRegion regNew = new ActiveRegion();
- if (regNew == null) throw new RuntimeException();
-
- regNew.eUp = eNewUp;
- /* __gl_dictListInsertBefore */
- regNew.nodeUp = Dict.dictInsertBefore(tess.dict, regAbove.nodeUp, regNew);
- if (regNew.nodeUp == null) throw new RuntimeException();
- regNew.fixUpperEdge = false;
- regNew.sentinel = false;
- regNew.dirty = false;
-
- eNewUp.activeRegion = regNew;
- return regNew;
- }
-
- static boolean IsWindingInside(GLUtessellatorImpl tess, int n) {
- switch (tess.windingRule) {
- case GLU.GLU_TESS_WINDING_ODD:
- return (n & 1) != 0;
- case GLU.GLU_TESS_WINDING_NONZERO:
- return (n != 0);
- case GLU.GLU_TESS_WINDING_POSITIVE:
- return (n > 0);
- case GLU.GLU_TESS_WINDING_NEGATIVE:
- return (n < 0);
- case GLU.GLU_TESS_WINDING_ABS_GEQ_TWO:
- return (n >= 2) || (n <= -2);
- }
- /*LINTED*/
-// assert (false);
- throw new InternalError();
- /*NOTREACHED*/
- }
-
-
- static void ComputeWinding(GLUtessellatorImpl tess, ActiveRegion reg) {
- reg.windingNumber = RegionAbove(reg).windingNumber + reg.eUp.winding;
- reg.inside = IsWindingInside(tess, reg.windingNumber);
- }
-
-
- static void FinishRegion(GLUtessellatorImpl tess, ActiveRegion reg)
-/*
- * Delete a region from the sweep line. This happens when the upper
- * and lower chains of a region meet (at a vertex on the sweep line).
- * The "inside" flag is copied to the appropriate mesh face (we could
- * not do this before -- since the structure of the mesh is always
- * changing, this face may not have even existed until now).
- */ {
- GLUhalfEdge e = reg.eUp;
- GLUface f = e.Lface;
-
- f.inside = reg.inside;
- f.anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */
- DeleteRegion(tess, reg);
- }
-
-
- static GLUhalfEdge FinishLeftRegions(GLUtessellatorImpl tess,
- ActiveRegion regFirst, ActiveRegion regLast)
-/*
- * We are given a vertex with one or more left-going edges. All affected
- * edges should be in the edge dictionary. Starting at regFirst.eUp,
- * we walk down deleting all regions where both edges have the same
- * origin vOrg. At the same time we copy the "inside" flag from the
- * active region to the face, since at this point each face will belong
- * to at most one region (this was not necessarily true until this point
- * in the sweep). The walk stops at the region above regLast; if regLast
- * is null we walk as far as possible. At the same time we relink the
- * mesh if necessary, so that the ordering of edges around vOrg is the
- * same as in the dictionary.
- */ {
- ActiveRegion reg, regPrev;
- GLUhalfEdge e, ePrev;
-
- regPrev = regFirst;
- ePrev = regFirst.eUp;
- while (regPrev != regLast) {
- regPrev.fixUpperEdge = false; /* placement was OK */
- reg = RegionBelow(regPrev);
- e = reg.eUp;
- if (e.Org != ePrev.Org) {
- if (!reg.fixUpperEdge) {
- /* Remove the last left-going edge. Even though there are no further
- * edges in the dictionary with this origin, there may be further
- * such edges in the mesh (if we are adding left edges to a vertex
- * that has already been processed). Thus it is important to call
- * FinishRegion rather than just DeleteRegion.
- */
- FinishRegion(tess, regPrev);
- break;
- }
- /* If the edge below was a temporary edge introduced by
- * ConnectRightVertex, now is the time to fix it.
- */
- e = Mesh.__gl_meshConnect(ePrev.Onext.Sym, e.Sym);
- if (e == null) throw new RuntimeException();
- if (!FixUpperEdge(reg, e)) throw new RuntimeException();
- }
-
- /* Relink edges so that ePrev.Onext == e */
- if (ePrev.Onext != e) {
- if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(ePrev, e)) throw new RuntimeException();
- }
- FinishRegion(tess, regPrev); /* may change reg.eUp */
- ePrev = reg.eUp;
- regPrev = reg;
- }
- return ePrev;
- }
-
-
- static void AddRightEdges(GLUtessellatorImpl tess, ActiveRegion regUp,
- GLUhalfEdge eFirst, GLUhalfEdge eLast, GLUhalfEdge eTopLeft,
- boolean cleanUp)
-/*
- * Purpose: insert right-going edges into the edge dictionary, and update
- * winding numbers and mesh connectivity appropriately. All right-going
- * edges share a common origin vOrg. Edges are inserted CCW starting at
- * eFirst; the last edge inserted is eLast.Sym.Lnext. If vOrg has any
- * left-going edges already processed, then eTopLeft must be the edge
- * such that an imaginary upward vertical segment from vOrg would be
- * contained between eTopLeft.Sym.Lnext and eTopLeft; otherwise eTopLeft
- * should be null.
- */ {
- ActiveRegion reg, regPrev;
- GLUhalfEdge e, ePrev;
- boolean firstTime = true;
-
- /* Insert the new right-going edges in the dictionary */
- e = eFirst;
- do {
- assert (Geom.VertLeq(e.Org, e.Sym.Org));
- AddRegionBelow(tess, regUp, e.Sym);
- e = e.Onext;
- } while (e != eLast);
-
- /* Walk *all* right-going edges from e.Org, in the dictionary order,
- * updating the winding numbers of each region, and re-linking the mesh
- * edges to match the dictionary ordering (if necessary).
- */
- if (eTopLeft == null) {
- eTopLeft = RegionBelow(regUp).eUp.Sym.Onext;
- }
- regPrev = regUp;
- ePrev = eTopLeft;
- for (; ;) {
- reg = RegionBelow(regPrev);
- e = reg.eUp.Sym;
- if (e.Org != ePrev.Org) break;
-
- if (e.Onext != ePrev) {
- /* Unlink e from its current position, and relink below ePrev */
- if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(ePrev.Sym.Lnext, e)) throw new RuntimeException();
- }
- /* Compute the winding number and "inside" flag for the new regions */
- reg.windingNumber = regPrev.windingNumber - e.winding;
- reg.inside = IsWindingInside(tess, reg.windingNumber);
-
- /* Check for two outgoing edges with same slope -- process these
- * before any intersection tests (see example in __gl_computeInterior).
- */
- regPrev.dirty = true;
- if (!firstTime && CheckForRightSplice(tess, regPrev)) {
- AddWinding(e, ePrev);
- DeleteRegion(tess, regPrev);
- if (!Mesh.__gl_meshDelete(ePrev)) throw new RuntimeException();
- }
- firstTime = false;
- regPrev = reg;
- ePrev = e;
- }
- regPrev.dirty = true;
- assert (regPrev.windingNumber - e.winding == reg.windingNumber);
-
- if (cleanUp) {
- /* Check for intersections between newly adjacent edges. */
- WalkDirtyRegions(tess, regPrev);
- }
- }
-
-
- static void CallCombine(GLUtessellatorImpl tess, GLUvertex isect,
- Object[] data, float[] weights, boolean needed) {
- double[] coords = new double[3];
-
- /* Copy coord data in case the callback changes it. */
- coords[0] = isect.coords[0];
- coords[1] = isect.coords[1];
- coords[2] = isect.coords[2];
-
- Object[] outData = new Object[1];
- tess.callCombineOrCombineData(coords, data, weights, outData);
- isect.data = outData[0];
- if (isect.data == null) {
- if (!needed) {
- isect.data = data[0];
- } else if (!tess.fatalError) {
- /* The only way fatal error is when two edges are found to intersect,
- * but the user has not provided the callback necessary to handle
- * generated intersection points.
- */
- tess.callErrorOrErrorData(GLU.GLU_TESS_NEED_COMBINE_CALLBACK);
- tess.fatalError = true;
- }
- }
- }
-
- static void SpliceMergeVertices(GLUtessellatorImpl tess, GLUhalfEdge e1,
- GLUhalfEdge e2)
-/*
- * Two vertices with idential coordinates are combined into one.
- * e1.Org is kept, while e2.Org is discarded.
- */ {
- Object[] data = new Object[4];
- float[] weights = new float[]{0.5f, 0.5f, 0.0f, 0.0f};
-
- data[0] = e1.Org.data;
- data[1] = e2.Org.data;
- CallCombine(tess, e1.Org, data, weights, false);
- if (!Mesh.__gl_meshSplice(e1, e2)) throw new RuntimeException();
- }
-
- static void VertexWeights(GLUvertex isect, GLUvertex org, GLUvertex dst,
- float[] weights)
-/*
- * Find some weights which describe how the intersection vertex is
- * a linear combination of "org" and "dest". Each of the two edges
- * which generated "isect" is allocated 50% of the weight; each edge
- * splits the weight between its org and dst according to the
- * relative distance to "isect".
- */ {
- double t1 = Geom.VertL1dist(org, isect);
- double t2 = Geom.VertL1dist(dst, isect);
-
- weights[0] = (float) (0.5 * t2 / (t1 + t2));
- weights[1] = (float) (0.5 * t1 / (t1 + t2));
- isect.coords[0] += weights[0] * org.coords[0] + weights[1] * dst.coords[0];
- isect.coords[1] += weights[0] * org.coords[1] + weights[1] * dst.coords[1];
- isect.coords[2] += weights[0] * org.coords[2] + weights[1] * dst.coords[2];
- }
-
-
- static void GetIntersectData(GLUtessellatorImpl tess, GLUvertex isect,
- GLUvertex orgUp, GLUvertex dstUp,
- GLUvertex orgLo, GLUvertex dstLo)
-/*
- * We've computed a new intersection point, now we need a "data" pointer
- * from the user so that we can refer to this new vertex in the
- * rendering callbacks.
- */ {
- Object[] data = new Object[4];
- float[] weights = new float[4];
- float[] weights1 = new float[2];
- float[] weights2 = new float[2];
-
- data[0] = orgUp.data;
- data[1] = dstUp.data;
- data[2] = orgLo.data;
- data[3] = dstLo.data;
-
- isect.coords[0] = isect.coords[1] = isect.coords[2] = 0;
- VertexWeights(isect, orgUp, dstUp, weights1);
- VertexWeights(isect, orgLo, dstLo, weights2);
- System.arraycopy(weights1, 0, weights, 0, 2);
- System.arraycopy(weights2, 0, weights, 2, 2);
-
- CallCombine(tess, isect, data, weights, true);
- }
-
- static boolean CheckForRightSplice(GLUtessellatorImpl tess, ActiveRegion regUp)
-/*
- * Check the upper and lower edge of "regUp", to make sure that the
- * eUp.Org is above eLo, or eLo.Org is below eUp (depending on which
- * origin is leftmost).
- *
- * The main purpose is to splice right-going edges with the same
- * dest vertex and nearly identical slopes (ie. we can't distinguish
- * the slopes numerically). However the splicing can also help us
- * to recover from numerical errors. For example, suppose at one
- * point we checked eUp and eLo, and decided that eUp.Org is barely
- * above eLo. Then later, we split eLo into two edges (eg. from
- * a splice operation like this one). This can change the result of
- * our test so that now eUp.Org is incident to eLo, or barely below it.
- * We must correct this condition to maintain the dictionary invariants.
- *
- * One possibility is to check these edges for intersection again
- * (ie. CheckForIntersect). This is what we do if possible. However
- * CheckForIntersect requires that tess.event lies between eUp and eLo,
- * so that it has something to fall back on when the intersection
- * calculation gives us an unusable answer. So, for those cases where
- * we can't check for intersection, this routine fixes the problem
- * by just splicing the offending vertex into the other edge.
- * This is a guaranteed solution, no matter how degenerate things get.
- * Basically this is a combinatorial solution to a numerical problem.
- */ {
- ActiveRegion regLo = RegionBelow(regUp);
- GLUhalfEdge eUp = regUp.eUp;
- GLUhalfEdge eLo = regLo.eUp;
-
- if (Geom.VertLeq(eUp.Org, eLo.Org)) {
- if (Geom.EdgeSign(eLo.Sym.Org, eUp.Org, eLo.Org) > 0) return false;
-
- /* eUp.Org appears to be below eLo */
- if (!Geom.VertEq(eUp.Org, eLo.Org)) {
- /* Splice eUp.Org into eLo */
- if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(eUp, eLo.Sym.Lnext)) throw new RuntimeException();
- regUp.dirty = regLo.dirty = true;
-
- } else if (eUp.Org != eLo.Org) {
- /* merge the two vertices, discarding eUp.Org */
- tess.pq.pqDelete(eUp.Org.pqHandle); /* __gl_pqSortDelete */
- SpliceMergeVertices(tess, eLo.Sym.Lnext, eUp);
- }
- } else {
- if (Geom.EdgeSign(eUp.Sym.Org, eLo.Org, eUp.Org) < 0) return false;
-
- /* eLo.Org appears to be above eUp, so splice eLo.Org into eUp */
- RegionAbove(regUp).dirty = regUp.dirty = true;
- if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException();
- }
- return true;
- }
-
- static boolean CheckForLeftSplice(GLUtessellatorImpl tess, ActiveRegion regUp)
-/*
- * Check the upper and lower edge of "regUp", to make sure that the
- * eUp.Sym.Org is above eLo, or eLo.Sym.Org is below eUp (depending on which
- * destination is rightmost).
- *
- * Theoretically, this should always be true. However, splitting an edge
- * into two pieces can change the results of previous tests. For example,
- * suppose at one point we checked eUp and eLo, and decided that eUp.Sym.Org
- * is barely above eLo. Then later, we split eLo into two edges (eg. from
- * a splice operation like this one). This can change the result of
- * the test so that now eUp.Sym.Org is incident to eLo, or barely below it.
- * We must correct this condition to maintain the dictionary invariants
- * (otherwise new edges might get inserted in the wrong place in the
- * dictionary, and bad stuff will happen).
- *
- * We fix the problem by just splicing the offending vertex into the
- * other edge.
- */ {
- ActiveRegion regLo = RegionBelow(regUp);
- GLUhalfEdge eUp = regUp.eUp;
- GLUhalfEdge eLo = regLo.eUp;
- GLUhalfEdge e;
-
- assert (!Geom.VertEq(eUp.Sym.Org, eLo.Sym.Org));
-
- if (Geom.VertLeq(eUp.Sym.Org, eLo.Sym.Org)) {
- if (Geom.EdgeSign(eUp.Sym.Org, eLo.Sym.Org, eUp.Org) < 0) return false;
-
- /* eLo.Sym.Org is above eUp, so splice eLo.Sym.Org into eUp */
- RegionAbove(regUp).dirty = regUp.dirty = true;
- e = Mesh.__gl_meshSplitEdge(eUp);
- if (e == null) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(eLo.Sym, e)) throw new RuntimeException();
- e.Lface.inside = regUp.inside;
- } else {
- if (Geom.EdgeSign(eLo.Sym.Org, eUp.Sym.Org, eLo.Org) > 0) return false;
-
- /* eUp.Sym.Org is below eLo, so splice eUp.Sym.Org into eLo */
- regUp.dirty = regLo.dirty = true;
- e = Mesh.__gl_meshSplitEdge(eLo);
- if (e == null) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym)) throw new RuntimeException();
- e.Sym.Lface.inside = regUp.inside;
- }
- return true;
- }
-
-
- static boolean CheckForIntersect(GLUtessellatorImpl tess, ActiveRegion regUp)
-/*
- * Check the upper and lower edges of the given region to see if
- * they intersect. If so, create the intersection and add it
- * to the data structures.
- *
- * Returns true if adding the new intersection resulted in a recursive
- * call to AddRightEdges(); in this case all "dirty" regions have been
- * checked for intersections, and possibly regUp has been deleted.
- */ {
- ActiveRegion regLo = RegionBelow(regUp);
- GLUhalfEdge eUp = regUp.eUp;
- GLUhalfEdge eLo = regLo.eUp;
- GLUvertex orgUp = eUp.Org;
- GLUvertex orgLo = eLo.Org;
- GLUvertex dstUp = eUp.Sym.Org;
- GLUvertex dstLo = eLo.Sym.Org;
- double tMinUp, tMaxLo;
- GLUvertex isect = new GLUvertex();
- GLUvertex orgMin;
- GLUhalfEdge e;
-
- assert (!Geom.VertEq(dstLo, dstUp));
- assert (Geom.EdgeSign(dstUp, tess.event, orgUp) <= 0);
- assert (Geom.EdgeSign(dstLo, tess.event, orgLo) >= 0);
- assert (orgUp != tess.event && orgLo != tess.event);
- assert (!regUp.fixUpperEdge && !regLo.fixUpperEdge);
-
- if (orgUp == orgLo) return false; /* right endpoints are the same */
-
- tMinUp = Math.min(orgUp.t, dstUp.t);
- tMaxLo = Math.max(orgLo.t, dstLo.t);
- if (tMinUp > tMaxLo) return false; /* t ranges do not overlap */
-
- if (Geom.VertLeq(orgUp, orgLo)) {
- if (Geom.EdgeSign(dstLo, orgUp, orgLo) > 0) return false;
- } else {
- if (Geom.EdgeSign(dstUp, orgLo, orgUp) < 0) return false;
- }
-
- /* At this point the edges intersect, at least marginally */
- DebugEvent(tess);
-
- Geom.EdgeIntersect(dstUp, orgUp, dstLo, orgLo, isect);
- /* The following properties are guaranteed: */
- assert (Math.min(orgUp.t, dstUp.t) <= isect.t);
- assert (isect.t <= Math.max(orgLo.t, dstLo.t));
- assert (Math.min(dstLo.s, dstUp.s) <= isect.s);
- assert (isect.s <= Math.max(orgLo.s, orgUp.s));
-
- if (Geom.VertLeq(isect, tess.event)) {
- /* The intersection point lies slightly to the left of the sweep line,
- * so move it until it''s slightly to the right of the sweep line.
- * (If we had perfect numerical precision, this would never happen
- * in the first place). The easiest and safest thing to do is
- * replace the intersection by tess.event.
- */
- isect.s = tess.event.s;
- isect.t = tess.event.t;
- }
- /* Similarly, if the computed intersection lies to the right of the
- * rightmost origin (which should rarely happen), it can cause
- * unbelievable inefficiency on sufficiently degenerate inputs.
- * (If you have the test program, try running test54.d with the
- * "X zoom" option turned on).
- */
- orgMin = Geom.VertLeq(orgUp, orgLo) ? orgUp : orgLo;
- if (Geom.VertLeq(orgMin, isect)) {
- isect.s = orgMin.s;
- isect.t = orgMin.t;
- }
-
- if (Geom.VertEq(isect, orgUp) || Geom.VertEq(isect, orgLo)) {
- /* Easy case -- intersection at one of the right endpoints */
- CheckForRightSplice(tess, regUp);
- return false;
- }
-
- if ((!Geom.VertEq(dstUp, tess.event)
- && Geom.EdgeSign(dstUp, tess.event, isect) >= 0)
- || (!Geom.VertEq(dstLo, tess.event)
- && Geom.EdgeSign(dstLo, tess.event, isect) <= 0)) {
- /* Very unusual -- the new upper or lower edge would pass on the
- * wrong side of the sweep event, or through it. This can happen
- * due to very small numerical errors in the intersection calculation.
- */
- if (dstLo == tess.event) {
- /* Splice dstLo into eUp, and process the new region(s) */
- if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(eLo.Sym, eUp)) throw new RuntimeException();
- regUp = TopLeftRegion(regUp);
- if (regUp == null) throw new RuntimeException();
- eUp = RegionBelow(regUp).eUp;
- FinishLeftRegions(tess, RegionBelow(regUp), regLo);
- AddRightEdges(tess, regUp, eUp.Sym.Lnext, eUp, eUp, true);
- return true;
- }
- if (dstUp == tess.event) {
- /* Splice dstUp into eLo, and process the new region(s) */
- if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym.Lnext)) throw new RuntimeException();
- regLo = regUp;
- regUp = TopRightRegion(regUp);
- e = RegionBelow(regUp).eUp.Sym.Onext;
- regLo.eUp = eLo.Sym.Lnext;
- eLo = FinishLeftRegions(tess, regLo, null);
- AddRightEdges(tess, regUp, eLo.Onext, eUp.Sym.Onext, e, true);
- return true;
- }
- /* Special case: called from ConnectRightVertex. If either
- * edge passes on the wrong side of tess.event, split it
- * (and wait for ConnectRightVertex to splice it appropriately).
- */
- if (Geom.EdgeSign(dstUp, tess.event, isect) >= 0) {
- RegionAbove(regUp).dirty = regUp.dirty = true;
- if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
- eUp.Org.s = tess.event.s;
- eUp.Org.t = tess.event.t;
- }
- if (Geom.EdgeSign(dstLo, tess.event, isect) <= 0) {
- regUp.dirty = regLo.dirty = true;
- if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
- eLo.Org.s = tess.event.s;
- eLo.Org.t = tess.event.t;
- }
- /* leave the rest for ConnectRightVertex */
- return false;
- }
-
- /* General case -- split both edges, splice into new vertex.
- * When we do the splice operation, the order of the arguments is
- * arbitrary as far as correctness goes. However, when the operation
- * creates a new face, the work done is proportional to the size of
- * the new face. We expect the faces in the processed part of
- * the mesh (ie. eUp.Lface) to be smaller than the faces in the
- * unprocessed original contours (which will be eLo.Sym.Lnext.Lface).
- */
- if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
- if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
- if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException();
- eUp.Org.s = isect.s;
- eUp.Org.t = isect.t;
- eUp.Org.pqHandle = tess.pq.pqInsert(eUp.Org); /* __gl_pqSortInsert */
- if (eUp.Org.pqHandle == Long.MAX_VALUE) {
- tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */
- tess.pq = null;
- throw new RuntimeException();
- }
- GetIntersectData(tess, eUp.Org, orgUp, dstUp, orgLo, dstLo);
- RegionAbove(regUp).dirty = regUp.dirty = regLo.dirty = true;
- return false;
- }
-
- static void WalkDirtyRegions(GLUtessellatorImpl tess, ActiveRegion regUp)
-/*
- * When the upper or lower edge of any region changes, the region is
- * marked "dirty". This routine walks through all the dirty regions
- * and makes sure that the dictionary invariants are satisfied
- * (see the comments at the beginning of this file). Of course
- * new dirty regions can be created as we make changes to restore
- * the invariants.
- */ {
- ActiveRegion regLo = RegionBelow(regUp);
- GLUhalfEdge eUp, eLo;
-
- for (; ;) {
- /* Find the lowest dirty region (we walk from the bottom up). */
- while (regLo.dirty) {
- regUp = regLo;
- regLo = RegionBelow(regLo);
- }
- if (!regUp.dirty) {
- regLo = regUp;
- regUp = RegionAbove(regUp);
- if (regUp == null || !regUp.dirty) {
- /* We've walked all the dirty regions */
- return;
- }
- }
- regUp.dirty = false;
- eUp = regUp.eUp;
- eLo = regLo.eUp;
-
- if (eUp.Sym.Org != eLo.Sym.Org) {
- /* Check that the edge ordering is obeyed at the Dst vertices. */
- if (CheckForLeftSplice(tess, regUp)) {
-
- /* If the upper or lower edge was marked fixUpperEdge, then
- * we no longer need it (since these edges are needed only for
- * vertices which otherwise have no right-going edges).
- */
- if (regLo.fixUpperEdge) {
- DeleteRegion(tess, regLo);
- if (!Mesh.__gl_meshDelete(eLo)) throw new RuntimeException();
- regLo = RegionBelow(regUp);
- eLo = regLo.eUp;
- } else if (regUp.fixUpperEdge) {
- DeleteRegion(tess, regUp);
- if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException();
- regUp = RegionAbove(regLo);
- eUp = regUp.eUp;
- }
- }
- }
- if (eUp.Org != eLo.Org) {
- if (eUp.Sym.Org != eLo.Sym.Org
- && !regUp.fixUpperEdge && !regLo.fixUpperEdge
- && (eUp.Sym.Org == tess.event || eLo.Sym.Org == tess.event)) {
- /* When all else fails in CheckForIntersect(), it uses tess.event
- * as the intersection location. To make this possible, it requires
- * that tess.event lie between the upper and lower edges, and also
- * that neither of these is marked fixUpperEdge (since in the worst
- * case it might splice one of these edges into tess.event, and
- * violate the invariant that fixable edges are the only right-going
- * edge from their associated vertex).
- */
- if (CheckForIntersect(tess, regUp)) {
- /* WalkDirtyRegions() was called recursively; we're done */
- return;
- }
- } else {
- /* Even though we can't use CheckForIntersect(), the Org vertices
- * may violate the dictionary edge ordering. Check and correct this.
- */
- CheckForRightSplice(tess, regUp);
- }
- }
- if (eUp.Org == eLo.Org && eUp.Sym.Org == eLo.Sym.Org) {
- /* A degenerate loop consisting of only two edges -- delete it. */
- AddWinding(eLo, eUp);
- DeleteRegion(tess, regUp);
- if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException();
- regUp = RegionAbove(regLo);
- }
- }
- }
-
-
- static void ConnectRightVertex(GLUtessellatorImpl tess, ActiveRegion regUp,
- GLUhalfEdge eBottomLeft)
-/*
- * Purpose: connect a "right" vertex vEvent (one where all edges go left)
- * to the unprocessed portion of the mesh. Since there are no right-going
- * edges, two regions (one above vEvent and one below) are being merged
- * into one. "regUp" is the upper of these two regions.
- *
- * There are two reasons for doing this (adding a right-going edge):
- * - if the two regions being merged are "inside", we must add an edge
- * to keep them separated (the combined region would not be monotone).
- * - in any case, we must leave some record of vEvent in the dictionary,
- * so that we can merge vEvent with features that we have not seen yet.
- * For example, maybe there is a vertical edge which passes just to
- * the right of vEvent; we would like to splice vEvent into this edge.
- *
- * However, we don't want to connect vEvent to just any vertex. We don''t
- * want the new edge to cross any other edges; otherwise we will create
- * intersection vertices even when the input data had no self-intersections.
- * (This is a bad thing; if the user's input data has no intersections,
- * we don't want to generate any false intersections ourselves.)
- *
- * Our eventual goal is to connect vEvent to the leftmost unprocessed
- * vertex of the combined region (the union of regUp and regLo).
- * But because of unseen vertices with all right-going edges, and also
- * new vertices which may be created by edge intersections, we don''t
- * know where that leftmost unprocessed vertex is. In the meantime, we
- * connect vEvent to the closest vertex of either chain, and mark the region
- * as "fixUpperEdge". This flag says to delete and reconnect this edge
- * to the next processed vertex on the boundary of the combined region.
- * Quite possibly the vertex we connected to will turn out to be the
- * closest one, in which case we won''t need to make any changes.
- */ {
- GLUhalfEdge eNew;
- GLUhalfEdge eTopLeft = eBottomLeft.Onext;
- ActiveRegion regLo = RegionBelow(regUp);
- GLUhalfEdge eUp = regUp.eUp;
- GLUhalfEdge eLo = regLo.eUp;
- boolean degenerate = false;
-
- if (eUp.Sym.Org != eLo.Sym.Org) {
- CheckForIntersect(tess, regUp);
- }
-
- /* Possible new degeneracies: upper or lower edge of regUp may pass
- * through vEvent, or may coincide with new intersection vertex
- */
- if (Geom.VertEq(eUp.Org, tess.event)) {
- if (!Mesh.__gl_meshSplice(eTopLeft.Sym.Lnext, eUp)) throw new RuntimeException();
- regUp = TopLeftRegion(regUp);
- if (regUp == null) throw new RuntimeException();
- eTopLeft = RegionBelow(regUp).eUp;
- FinishLeftRegions(tess, RegionBelow(regUp), regLo);
- degenerate = true;
- }
- if (Geom.VertEq(eLo.Org, tess.event)) {
- if (!Mesh.__gl_meshSplice(eBottomLeft, eLo.Sym.Lnext)) throw new RuntimeException();
- eBottomLeft = FinishLeftRegions(tess, regLo, null);
- degenerate = true;
- }
- if (degenerate) {
- AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true);
- return;
- }
-
- /* Non-degenerate situation -- need to add a temporary, fixable edge.
- * Connect to the closer of eLo.Org, eUp.Org.
- */
- if (Geom.VertLeq(eLo.Org, eUp.Org)) {
- eNew = eLo.Sym.Lnext;
- } else {
- eNew = eUp;
- }
- eNew = Mesh.__gl_meshConnect(eBottomLeft.Onext.Sym, eNew);
- if (eNew == null) throw new RuntimeException();
-
- /* Prevent cleanup, otherwise eNew might disappear before we've even
- * had a chance to mark it as a temporary edge.
- */
- AddRightEdges(tess, regUp, eNew, eNew.Onext, eNew.Onext, false);
- eNew.Sym.activeRegion.fixUpperEdge = true;
- WalkDirtyRegions(tess, regUp);
- }
-
-/* Because vertices at exactly the same location are merged together
- * before we process the sweep event, some degenerate cases can't occur.
- * However if someone eventually makes the modifications required to
- * merge features which are close together, the cases below marked
- * TOLERANCE_NONZERO will be useful. They were debugged before the
- * code to merge identical vertices in the main loop was added.
- */
- private static final boolean TOLERANCE_NONZERO = false;
-
- static void ConnectLeftDegenerate(GLUtessellatorImpl tess,
- ActiveRegion regUp, GLUvertex vEvent)
-/*
- * The event vertex lies exacty on an already-processed edge or vertex.
- * Adding the new vertex involves splicing it into the already-processed
- * part of the mesh.
- */ {
- GLUhalfEdge e, eTopLeft, eTopRight, eLast;
- ActiveRegion reg;
-
- e = regUp.eUp;
- if (Geom.VertEq(e.Org, vEvent)) {
- /* e.Org is an unprocessed vertex - just combine them, and wait
- * for e.Org to be pulled from the queue
- */
- assert (TOLERANCE_NONZERO);
- SpliceMergeVertices(tess, e, vEvent.anEdge);
- return;
- }
-
- if (!Geom.VertEq(e.Sym.Org, vEvent)) {
- /* General case -- splice vEvent into edge e which passes through it */
- if (Mesh.__gl_meshSplitEdge(e.Sym) == null) throw new RuntimeException();
- if (regUp.fixUpperEdge) {
- /* This edge was fixable -- delete unused portion of original edge */
- if (!Mesh.__gl_meshDelete(e.Onext)) throw new RuntimeException();
- regUp.fixUpperEdge = false;
- }
- if (!Mesh.__gl_meshSplice(vEvent.anEdge, e)) throw new RuntimeException();
- SweepEvent(tess, vEvent); /* recurse */
- return;
- }
-
- /* vEvent coincides with e.Sym.Org, which has already been processed.
- * Splice in the additional right-going edges.
- */
- assert (TOLERANCE_NONZERO);
- regUp = TopRightRegion(regUp);
- reg = RegionBelow(regUp);
- eTopRight = reg.eUp.Sym;
- eTopLeft = eLast = eTopRight.Onext;
- if (reg.fixUpperEdge) {
- /* Here e.Sym.Org has only a single fixable edge going right.
- * We can delete it since now we have some real right-going edges.
- */
- assert (eTopLeft != eTopRight); /* there are some left edges too */
- DeleteRegion(tess, reg);
- if (!Mesh.__gl_meshDelete(eTopRight)) throw new RuntimeException();
- eTopRight = eTopLeft.Sym.Lnext;
- }
- if (!Mesh.__gl_meshSplice(vEvent.anEdge, eTopRight)) throw new RuntimeException();
- if (!Geom.EdgeGoesLeft(eTopLeft)) {
- /* e.Sym.Org had no left-going edges -- indicate this to AddRightEdges() */
- eTopLeft = null;
- }
- AddRightEdges(tess, regUp, eTopRight.Onext, eLast, eTopLeft, true);
- }
-
-
- static void ConnectLeftVertex(GLUtessellatorImpl tess, GLUvertex vEvent)
-/*
- * Purpose: connect a "left" vertex (one where both edges go right)
- * to the processed portion of the mesh. Let R be the active region
- * containing vEvent, and let U and L be the upper and lower edge
- * chains of R. There are two possibilities:
- *
- * - the normal case: split R into two regions, by connecting vEvent to
- * the rightmost vertex of U or L lying to the left of the sweep line
- *
- * - the degenerate case: if vEvent is close enough to U or L, we
- * merge vEvent into that edge chain. The subcases are:
- * - merging with the rightmost vertex of U or L
- * - merging with the active edge of U or L
- * - merging with an already-processed portion of U or L
- */ {
- ActiveRegion regUp, regLo, reg;
- GLUhalfEdge eUp, eLo, eNew;
- ActiveRegion tmp = new ActiveRegion();
-
- /* assert ( vEvent.anEdge.Onext.Onext == vEvent.anEdge ); */
-
- /* Get a pointer to the active region containing vEvent */
- tmp.eUp = vEvent.anEdge.Sym;
- /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
- regUp = (ActiveRegion) Dict.dictKey(Dict.dictSearch(tess.dict, tmp));
- regLo = RegionBelow(regUp);
- eUp = regUp.eUp;
- eLo = regLo.eUp;
-
- /* Try merging with U or L first */
- if (Geom.EdgeSign(eUp.Sym.Org, vEvent, eUp.Org) == 0) {
- ConnectLeftDegenerate(tess, regUp, vEvent);
- return;
- }
-
- /* Connect vEvent to rightmost processed vertex of either chain.
- * e.Sym.Org is the vertex that we will connect to vEvent.
- */
- reg = Geom.VertLeq(eLo.Sym.Org, eUp.Sym.Org) ? regUp : regLo;
-
- if (regUp.inside || reg.fixUpperEdge) {
- if (reg == regUp) {
- eNew = Mesh.__gl_meshConnect(vEvent.anEdge.Sym, eUp.Lnext);
- if (eNew == null) throw new RuntimeException();
- } else {
- GLUhalfEdge tempHalfEdge = Mesh.__gl_meshConnect(eLo.Sym.Onext.Sym, vEvent.anEdge);
- if (tempHalfEdge == null) throw new RuntimeException();
-
- eNew = tempHalfEdge.Sym;
- }
- if (reg.fixUpperEdge) {
- if (!FixUpperEdge(reg, eNew)) throw new RuntimeException();
- } else {
- ComputeWinding(tess, AddRegionBelow(tess, regUp, eNew));
- }
- SweepEvent(tess, vEvent);
- } else {
- /* The new vertex is in a region which does not belong to the polygon.
- * We don''t need to connect this vertex to the rest of the mesh.
- */
- AddRightEdges(tess, regUp, vEvent.anEdge, vEvent.anEdge, null, true);
- }
- }
-
-
- static void SweepEvent(GLUtessellatorImpl tess, GLUvertex vEvent)
-/*
- * Does everything necessary when the sweep line crosses a vertex.
- * Updates the mesh and the edge dictionary.
- */ {
- ActiveRegion regUp, reg;
- GLUhalfEdge e, eTopLeft, eBottomLeft;
-
- tess.event = vEvent; /* for access in EdgeLeq() */
- DebugEvent(tess);
-
- /* Check if this vertex is the right endpoint of an edge that is
- * already in the dictionary. In this case we don't need to waste
- * time searching for the location to insert new edges.
- */
- e = vEvent.anEdge;
- while (e.activeRegion == null) {
- e = e.Onext;
- if (e == vEvent.anEdge) {
- /* All edges go right -- not incident to any processed edges */
- ConnectLeftVertex(tess, vEvent);
- return;
- }
- }
-
- /* Processing consists of two phases: first we "finish" all the
- * active regions where both the upper and lower edges terminate
- * at vEvent (ie. vEvent is closing off these regions).
- * We mark these faces "inside" or "outside" the polygon according
- * to their winding number, and delete the edges from the dictionary.
- * This takes care of all the left-going edges from vEvent.
- */
- regUp = TopLeftRegion(e.activeRegion);
- if (regUp == null) throw new RuntimeException();
- reg = RegionBelow(regUp);
- eTopLeft = reg.eUp;
- eBottomLeft = FinishLeftRegions(tess, reg, null);
-
- /* Next we process all the right-going edges from vEvent. This
- * involves adding the edges to the dictionary, and creating the
- * associated "active regions" which record information about the
- * regions between adjacent dictionary edges.
- */
- if (eBottomLeft.Onext == eTopLeft) {
- /* No right-going edges -- add a temporary "fixable" edge */
- ConnectRightVertex(tess, regUp, eBottomLeft);
- } else {
- AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true);
- }
- }
-
-
-/* Make the sentinel coordinates big enough that they will never be
- * merged with real input features. (Even with the largest possible
- * input contour and the maximum tolerance of 1.0, no merging will be
- * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
- */
- private static final double SENTINEL_COORD = (4.0 * GLU.GLU_TESS_MAX_COORD);
-
- static void AddSentinel(GLUtessellatorImpl tess, double t)
-/*
- * We add two sentinel edges above and below all other edges,
- * to avoid special cases at the top and bottom.
- */ {
- GLUhalfEdge e;
- ActiveRegion reg = new ActiveRegion();
- if (reg == null) throw new RuntimeException();
-
- e = Mesh.__gl_meshMakeEdge(tess.mesh);
- if (e == null) throw new RuntimeException();
-
- e.Org.s = SENTINEL_COORD;
- e.Org.t = t;
- e.Sym.Org.s = -SENTINEL_COORD;
- e.Sym.Org.t = t;
- tess.event = e.Sym.Org; /* initialize it */
-
- reg.eUp = e;
- reg.windingNumber = 0;
- reg.inside = false;
- reg.fixUpperEdge = false;
- reg.sentinel = true;
- reg.dirty = false;
- reg.nodeUp = Dict.dictInsert(tess.dict, reg); /* __gl_dictListInsertBefore */
- if (reg.nodeUp == null) throw new RuntimeException();
- }
-
-
- static void InitEdgeDict(final GLUtessellatorImpl tess)
-/*
- * We maintain an ordering of edge intersections with the sweep line.
- * This order is maintained in a dynamic dictionary.
- */ {
- /* __gl_dictListNewDict */
- tess.dict = Dict.dictNewDict(tess, new Dict.DictLeq() {
- public boolean leq(Object frame, Object key1, Object key2) {
- return EdgeLeq(tess, (ActiveRegion) key1, (ActiveRegion) key2);
- }
- });
- if (tess.dict == null) throw new RuntimeException();
-
- AddSentinel(tess, -SENTINEL_COORD);
- AddSentinel(tess, SENTINEL_COORD);
- }
-
-
- static void DoneEdgeDict(GLUtessellatorImpl tess) {
- ActiveRegion reg;
- int fixedEdges = 0;
-
- /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
- while ((reg = (ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))) != null) {
- /*
- * At the end of all processing, the dictionary should contain
- * only the two sentinel edges, plus at most one "fixable" edge
- * created by ConnectRightVertex().
- */
- if (!reg.sentinel) {
- assert (reg.fixUpperEdge);
- assert (++fixedEdges == 1);
- }
- assert (reg.windingNumber == 0);
- DeleteRegion(tess, reg);
-/* __gl_meshDelete( reg.eUp );*/
- }
- Dict.dictDeleteDict(tess.dict); /* __gl_dictListDeleteDict */
- }
-
-
- static void RemoveDegenerateEdges(GLUtessellatorImpl tess)
-/*
- * Remove zero-length edges, and contours with fewer than 3 vertices.
- */ {
- GLUhalfEdge e, eNext, eLnext;
- GLUhalfEdge eHead = tess.mesh.eHead;
-
- /*LINTED*/
- for (e = eHead.next; e != eHead; e = eNext) {
- eNext = e.next;
- eLnext = e.Lnext;
-
- if (Geom.VertEq(e.Org, e.Sym.Org) && e.Lnext.Lnext != e) {
- /* Zero-length edge, contour has at least 3 edges */
-
- SpliceMergeVertices(tess, eLnext, e); /* deletes e.Org */
- if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException(); /* e is a self-loop */
- e = eLnext;
- eLnext = e.Lnext;
- }
- if (eLnext.Lnext == e) {
- /* Degenerate contour (one or two edges) */
-
- if (eLnext != e) {
- if (eLnext == eNext || eLnext == eNext.Sym) {
- eNext = eNext.next;
- }
- if (!Mesh.__gl_meshDelete(eLnext)) throw new RuntimeException();
- }
- if (e == eNext || e == eNext.Sym) {
- eNext = eNext.next;
- }
- if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException();
- }
- }
- }
-
- static boolean InitPriorityQ(GLUtessellatorImpl tess)
-/*
- * Insert all vertices into the priority queue which determines the
- * order in which vertices cross the sweep line.
- */ {
- PriorityQ pq;
- GLUvertex v, vHead;
-
- /* __gl_pqSortNewPriorityQ */
- pq = tess.pq = PriorityQ.pqNewPriorityQ(new PriorityQ.Leq() {
- public boolean leq(Object key1, Object key2) {
- return Geom.VertLeq(((GLUvertex) key1), (GLUvertex) key2);
- }
- });
- if (pq == null) return false;
-
- vHead = tess.mesh.vHead;
- for (v = vHead.next; v != vHead; v = v.next) {
- v.pqHandle = pq.pqInsert(v); /* __gl_pqSortInsert */
- if (v.pqHandle == Long.MAX_VALUE) break;
- }
- if (v != vHead || !pq.pqInit()) { /* __gl_pqSortInit */
- tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */
- tess.pq = null;
- return false;
- }
-
- return true;
- }
-
-
- static void DonePriorityQ(GLUtessellatorImpl tess) {
- tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */
- }
-
-
- static boolean RemoveDegenerateFaces(GLUmesh mesh)
-/*
- * Delete any degenerate faces with only two edges. WalkDirtyRegions()
- * will catch almost all of these, but it won't catch degenerate faces
- * produced by splice operations on already-processed edges.
- * The two places this can happen are in FinishLeftRegions(), when
- * we splice in a "temporary" edge produced by ConnectRightVertex(),
- * and in CheckForLeftSplice(), where we splice already-processed
- * edges to ensure that our dictionary invariants are not violated
- * by numerical errors.
- *
- * In both these cases it is *very* dangerous to delete the offending
- * edge at the time, since one of the routines further up the stack
- * will sometimes be keeping a pointer to that edge.
- */ {
- GLUface f, fNext;
- GLUhalfEdge e;
-
- /*LINTED*/
- for (f = mesh.fHead.next; f != mesh.fHead; f = fNext) {
- fNext = f.next;
- e = f.anEdge;
- assert (e.Lnext != e);
-
- if (e.Lnext.Lnext == e) {
- /* A face with only two edges */
- AddWinding(e.Onext, e);
- if (!Mesh.__gl_meshDelete(e)) return false;
- }
- }
- return true;
- }
-
- public static boolean __gl_computeInterior(GLUtessellatorImpl tess)
-/*
- * __gl_computeInterior( tess ) computes the planar arrangement specified
- * by the given contours, and further subdivides this arrangement
- * into regions. Each region is marked "inside" if it belongs
- * to the polygon, according to the rule given by tess.windingRule.
- * Each interior region is guaranteed be monotone.
- */ {
- GLUvertex v, vNext;
-
- tess.fatalError = false;
-
- /* Each vertex defines an event for our sweep line. Start by inserting
- * all the vertices in a priority queue. Events are processed in
- * lexicographic order, ie.
- *
- * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
- */
- RemoveDegenerateEdges(tess);
- if (!InitPriorityQ(tess)) return false; /* if error */
- InitEdgeDict(tess);
-
- /* __gl_pqSortExtractMin */
- while ((v = (GLUvertex) tess.pq.pqExtractMin()) != null) {
- for (; ;) {
- vNext = (GLUvertex) tess.pq.pqMinimum(); /* __gl_pqSortMinimum */
- if (vNext == null || !Geom.VertEq(vNext, v)) break;
-
- /* Merge together all vertices at exactly the same location.
- * This is more efficient than processing them one at a time,
- * simplifies the code (see ConnectLeftDegenerate), and is also
- * important for correct handling of certain degenerate cases.
- * For example, suppose there are two identical edges A and B
- * that belong to different contours (so without this code they would
- * be processed by separate sweep events). Suppose another edge C
- * crosses A and B from above. When A is processed, we split it
- * at its intersection point with C. However this also splits C,
- * so when we insert B we may compute a slightly different
- * intersection point. This might leave two edges with a small
- * gap between them. This kind of error is especially obvious
- * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
- */
- vNext = (GLUvertex) tess.pq.pqExtractMin(); /* __gl_pqSortExtractMin*/
- SpliceMergeVertices(tess, v.anEdge, vNext.anEdge);
- }
- SweepEvent(tess, v);
- }
-
- /* Set tess.event for debugging purposes */
- /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
- tess.event = ((ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))).eUp.Org;
- DebugEvent(tess);
- DoneEdgeDict(tess);
- DonePriorityQ(tess);
-
- if (!RemoveDegenerateFaces(tess.mesh)) return false;
- Mesh.__gl_meshCheckMesh(tess.mesh);
-
- return true;
- }
-}