diff options
Diffstat (limited to 'src/classes/com/sun/opengl/impl/tessellator/Sweep.java')
-rw-r--r-- | src/classes/com/sun/opengl/impl/tessellator/Sweep.java | 1353 |
1 files changed, 0 insertions, 1353 deletions
diff --git a/src/classes/com/sun/opengl/impl/tessellator/Sweep.java b/src/classes/com/sun/opengl/impl/tessellator/Sweep.java deleted file mode 100644 index 105328d87..000000000 --- a/src/classes/com/sun/opengl/impl/tessellator/Sweep.java +++ /dev/null @@ -1,1353 +0,0 @@ -/* -* Portions Copyright (C) 2003-2006 Sun Microsystems, Inc. -* All rights reserved. -*/ - -/* -** License Applicability. Except to the extent portions of this file are -** made subject to an alternative license as permitted in the SGI Free -** Software License B, Version 1.1 (the "License"), the contents of this -** file are subject only to the provisions of the License. You may not use -** this file except in compliance with the License. You may obtain a copy -** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 -** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: -** -** http://oss.sgi.com/projects/FreeB -** -** Note that, as provided in the License, the Software is distributed on an -** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS -** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND -** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A -** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. -** -** NOTE: The Original Code (as defined below) has been licensed to Sun -** Microsystems, Inc. ("Sun") under the SGI Free Software License B -** (Version 1.1), shown above ("SGI License"). Pursuant to Section -** 3.2(3) of the SGI License, Sun is distributing the Covered Code to -** you under an alternative license ("Alternative License"). This -** Alternative License includes all of the provisions of the SGI License -** except that Section 2.2 and 11 are omitted. Any differences between -** the Alternative License and the SGI License are offered solely by Sun -** and not by SGI. -** -** Original Code. The Original Code is: OpenGL Sample Implementation, -** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, -** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. -** Copyright in any portions created by third parties is as indicated -** elsewhere herein. All Rights Reserved. -** -** Additional Notice Provisions: The application programming interfaces -** established by SGI in conjunction with the Original Code are The -** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released -** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version -** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X -** Window System(R) (Version 1.3), released October 19, 1998. This software -** was created using the OpenGL(R) version 1.2.1 Sample Implementation -** published by SGI, but has not been independently verified as being -** compliant with the OpenGL(R) version 1.2.1 Specification. -** -** Author: Eric Veach, July 1994 -** Java Port: Pepijn Van Eeckhoudt, July 2003 -** Java Port: Nathan Parker Burg, August 2003 -*/ -package com.sun.opengl.impl.glu.tessellator; - -import javax.media.opengl.*; -import javax.media.opengl.glu.*; - -class Sweep { - private Sweep() { - } - -// #ifdef FOR_TRITE_TEST_PROGRAM -// extern void DebugEvent( GLUtessellator *tess ); -// #else - private static void DebugEvent(GLUtessellatorImpl tess) { - - } -// #endif - -/* - * Invariants for the Edge Dictionary. - * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2) - * at any valid location of the sweep event - * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2 - * share a common endpoint - * - for each e, e.Dst has been processed, but not e.Org - * - each edge e satisfies VertLeq(e.Dst,event) && VertLeq(event,e.Org) - * where "event" is the current sweep line event. - * - no edge e has zero length - * - * Invariants for the Mesh (the processed portion). - * - the portion of the mesh left of the sweep line is a planar graph, - * ie. there is *some* way to embed it in the plane - * - no processed edge has zero length - * - no two processed vertices have identical coordinates - * - each "inside" region is monotone, ie. can be broken into two chains - * of monotonically increasing vertices according to VertLeq(v1,v2) - * - a non-invariant: these chains may intersect (very slightly) - * - * Invariants for the Sweep. - * - if none of the edges incident to the event vertex have an activeRegion - * (ie. none of these edges are in the edge dictionary), then the vertex - * has only right-going edges. - * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced - * by ConnectRightVertex), then it is the only right-going edge from - * its associated vertex. (This says that these edges exist only - * when it is necessary.) - */ - -/* When we merge two edges into one, we need to compute the combined - * winding of the new edge. - */ - private static void AddWinding(GLUhalfEdge eDst, GLUhalfEdge eSrc) { - eDst.winding += eSrc.winding; - eDst.Sym.winding += eSrc.Sym.winding; - } - - - private static ActiveRegion RegionBelow(ActiveRegion r) { - return ((ActiveRegion) Dict.dictKey(Dict.dictPred(r.nodeUp))); - } - - private static ActiveRegion RegionAbove(ActiveRegion r) { - return ((ActiveRegion) Dict.dictKey(Dict.dictSucc(r.nodeUp))); - } - - static boolean EdgeLeq(GLUtessellatorImpl tess, ActiveRegion reg1, ActiveRegion reg2) -/* - * Both edges must be directed from right to left (this is the canonical - * direction for the upper edge of each region). - * - * The strategy is to evaluate a "t" value for each edge at the - * current sweep line position, given by tess.event. The calculations - * are designed to be very stable, but of course they are not perfect. - * - * Special case: if both edge destinations are at the sweep event, - * we sort the edges by slope (they would otherwise compare equally). - */ { - GLUvertex event = tess.event; - GLUhalfEdge e1, e2; - double t1, t2; - - e1 = reg1.eUp; - e2 = reg2.eUp; - - if (e1.Sym.Org == event) { - if (e2.Sym.Org == event) { - /* Two edges right of the sweep line which meet at the sweep event. - * Sort them by slope. - */ - if (Geom.VertLeq(e1.Org, e2.Org)) { - return Geom.EdgeSign(e2.Sym.Org, e1.Org, e2.Org) <= 0; - } - return Geom.EdgeSign(e1.Sym.Org, e2.Org, e1.Org) >= 0; - } - return Geom.EdgeSign(e2.Sym.Org, event, e2.Org) <= 0; - } - if (e2.Sym.Org == event) { - return Geom.EdgeSign(e1.Sym.Org, event, e1.Org) >= 0; - } - - /* General case - compute signed distance *from* e1, e2 to event */ - t1 = Geom.EdgeEval(e1.Sym.Org, event, e1.Org); - t2 = Geom.EdgeEval(e2.Sym.Org, event, e2.Org); - return (t1 >= t2); - } - - - static void DeleteRegion(GLUtessellatorImpl tess, ActiveRegion reg) { - if (reg.fixUpperEdge) { - /* It was created with zero winding number, so it better be - * deleted with zero winding number (ie. it better not get merged - * with a real edge). - */ - assert (reg.eUp.winding == 0); - } - reg.eUp.activeRegion = null; - Dict.dictDelete(tess.dict, reg.nodeUp); /* __gl_dictListDelete */ - } - - - static boolean FixUpperEdge(ActiveRegion reg, GLUhalfEdge newEdge) -/* - * Replace an upper edge which needs fixing (see ConnectRightVertex). - */ { - assert (reg.fixUpperEdge); - if (!Mesh.__gl_meshDelete(reg.eUp)) return false; - reg.fixUpperEdge = false; - reg.eUp = newEdge; - newEdge.activeRegion = reg; - - return true; - } - - static ActiveRegion TopLeftRegion(ActiveRegion reg) { - GLUvertex org = reg.eUp.Org; - GLUhalfEdge e; - - /* Find the region above the uppermost edge with the same origin */ - do { - reg = RegionAbove(reg); - } while (reg.eUp.Org == org); - - /* If the edge above was a temporary edge introduced by ConnectRightVertex, - * now is the time to fix it. - */ - if (reg.fixUpperEdge) { - e = Mesh.__gl_meshConnect(RegionBelow(reg).eUp.Sym, reg.eUp.Lnext); - if (e == null) return null; - if (!FixUpperEdge(reg, e)) return null; - reg = RegionAbove(reg); - } - return reg; - } - - static ActiveRegion TopRightRegion(ActiveRegion reg) { - GLUvertex dst = reg.eUp.Sym.Org; - - /* Find the region above the uppermost edge with the same destination */ - do { - reg = RegionAbove(reg); - } while (reg.eUp.Sym.Org == dst); - return reg; - } - - static ActiveRegion AddRegionBelow(GLUtessellatorImpl tess, - ActiveRegion regAbove, - GLUhalfEdge eNewUp) -/* - * Add a new active region to the sweep line, *somewhere* below "regAbove" - * (according to where the new edge belongs in the sweep-line dictionary). - * The upper edge of the new region will be "eNewUp". - * Winding number and "inside" flag are not updated. - */ { - ActiveRegion regNew = new ActiveRegion(); - if (regNew == null) throw new RuntimeException(); - - regNew.eUp = eNewUp; - /* __gl_dictListInsertBefore */ - regNew.nodeUp = Dict.dictInsertBefore(tess.dict, regAbove.nodeUp, regNew); - if (regNew.nodeUp == null) throw new RuntimeException(); - regNew.fixUpperEdge = false; - regNew.sentinel = false; - regNew.dirty = false; - - eNewUp.activeRegion = regNew; - return regNew; - } - - static boolean IsWindingInside(GLUtessellatorImpl tess, int n) { - switch (tess.windingRule) { - case GLU.GLU_TESS_WINDING_ODD: - return (n & 1) != 0; - case GLU.GLU_TESS_WINDING_NONZERO: - return (n != 0); - case GLU.GLU_TESS_WINDING_POSITIVE: - return (n > 0); - case GLU.GLU_TESS_WINDING_NEGATIVE: - return (n < 0); - case GLU.GLU_TESS_WINDING_ABS_GEQ_TWO: - return (n >= 2) || (n <= -2); - } - /*LINTED*/ -// assert (false); - throw new InternalError(); - /*NOTREACHED*/ - } - - - static void ComputeWinding(GLUtessellatorImpl tess, ActiveRegion reg) { - reg.windingNumber = RegionAbove(reg).windingNumber + reg.eUp.winding; - reg.inside = IsWindingInside(tess, reg.windingNumber); - } - - - static void FinishRegion(GLUtessellatorImpl tess, ActiveRegion reg) -/* - * Delete a region from the sweep line. This happens when the upper - * and lower chains of a region meet (at a vertex on the sweep line). - * The "inside" flag is copied to the appropriate mesh face (we could - * not do this before -- since the structure of the mesh is always - * changing, this face may not have even existed until now). - */ { - GLUhalfEdge e = reg.eUp; - GLUface f = e.Lface; - - f.inside = reg.inside; - f.anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */ - DeleteRegion(tess, reg); - } - - - static GLUhalfEdge FinishLeftRegions(GLUtessellatorImpl tess, - ActiveRegion regFirst, ActiveRegion regLast) -/* - * We are given a vertex with one or more left-going edges. All affected - * edges should be in the edge dictionary. Starting at regFirst.eUp, - * we walk down deleting all regions where both edges have the same - * origin vOrg. At the same time we copy the "inside" flag from the - * active region to the face, since at this point each face will belong - * to at most one region (this was not necessarily true until this point - * in the sweep). The walk stops at the region above regLast; if regLast - * is null we walk as far as possible. At the same time we relink the - * mesh if necessary, so that the ordering of edges around vOrg is the - * same as in the dictionary. - */ { - ActiveRegion reg, regPrev; - GLUhalfEdge e, ePrev; - - regPrev = regFirst; - ePrev = regFirst.eUp; - while (regPrev != regLast) { - regPrev.fixUpperEdge = false; /* placement was OK */ - reg = RegionBelow(regPrev); - e = reg.eUp; - if (e.Org != ePrev.Org) { - if (!reg.fixUpperEdge) { - /* Remove the last left-going edge. Even though there are no further - * edges in the dictionary with this origin, there may be further - * such edges in the mesh (if we are adding left edges to a vertex - * that has already been processed). Thus it is important to call - * FinishRegion rather than just DeleteRegion. - */ - FinishRegion(tess, regPrev); - break; - } - /* If the edge below was a temporary edge introduced by - * ConnectRightVertex, now is the time to fix it. - */ - e = Mesh.__gl_meshConnect(ePrev.Onext.Sym, e.Sym); - if (e == null) throw new RuntimeException(); - if (!FixUpperEdge(reg, e)) throw new RuntimeException(); - } - - /* Relink edges so that ePrev.Onext == e */ - if (ePrev.Onext != e) { - if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(ePrev, e)) throw new RuntimeException(); - } - FinishRegion(tess, regPrev); /* may change reg.eUp */ - ePrev = reg.eUp; - regPrev = reg; - } - return ePrev; - } - - - static void AddRightEdges(GLUtessellatorImpl tess, ActiveRegion regUp, - GLUhalfEdge eFirst, GLUhalfEdge eLast, GLUhalfEdge eTopLeft, - boolean cleanUp) -/* - * Purpose: insert right-going edges into the edge dictionary, and update - * winding numbers and mesh connectivity appropriately. All right-going - * edges share a common origin vOrg. Edges are inserted CCW starting at - * eFirst; the last edge inserted is eLast.Sym.Lnext. If vOrg has any - * left-going edges already processed, then eTopLeft must be the edge - * such that an imaginary upward vertical segment from vOrg would be - * contained between eTopLeft.Sym.Lnext and eTopLeft; otherwise eTopLeft - * should be null. - */ { - ActiveRegion reg, regPrev; - GLUhalfEdge e, ePrev; - boolean firstTime = true; - - /* Insert the new right-going edges in the dictionary */ - e = eFirst; - do { - assert (Geom.VertLeq(e.Org, e.Sym.Org)); - AddRegionBelow(tess, regUp, e.Sym); - e = e.Onext; - } while (e != eLast); - - /* Walk *all* right-going edges from e.Org, in the dictionary order, - * updating the winding numbers of each region, and re-linking the mesh - * edges to match the dictionary ordering (if necessary). - */ - if (eTopLeft == null) { - eTopLeft = RegionBelow(regUp).eUp.Sym.Onext; - } - regPrev = regUp; - ePrev = eTopLeft; - for (; ;) { - reg = RegionBelow(regPrev); - e = reg.eUp.Sym; - if (e.Org != ePrev.Org) break; - - if (e.Onext != ePrev) { - /* Unlink e from its current position, and relink below ePrev */ - if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(ePrev.Sym.Lnext, e)) throw new RuntimeException(); - } - /* Compute the winding number and "inside" flag for the new regions */ - reg.windingNumber = regPrev.windingNumber - e.winding; - reg.inside = IsWindingInside(tess, reg.windingNumber); - - /* Check for two outgoing edges with same slope -- process these - * before any intersection tests (see example in __gl_computeInterior). - */ - regPrev.dirty = true; - if (!firstTime && CheckForRightSplice(tess, regPrev)) { - AddWinding(e, ePrev); - DeleteRegion(tess, regPrev); - if (!Mesh.__gl_meshDelete(ePrev)) throw new RuntimeException(); - } - firstTime = false; - regPrev = reg; - ePrev = e; - } - regPrev.dirty = true; - assert (regPrev.windingNumber - e.winding == reg.windingNumber); - - if (cleanUp) { - /* Check for intersections between newly adjacent edges. */ - WalkDirtyRegions(tess, regPrev); - } - } - - - static void CallCombine(GLUtessellatorImpl tess, GLUvertex isect, - Object[] data, float[] weights, boolean needed) { - double[] coords = new double[3]; - - /* Copy coord data in case the callback changes it. */ - coords[0] = isect.coords[0]; - coords[1] = isect.coords[1]; - coords[2] = isect.coords[2]; - - Object[] outData = new Object[1]; - tess.callCombineOrCombineData(coords, data, weights, outData); - isect.data = outData[0]; - if (isect.data == null) { - if (!needed) { - isect.data = data[0]; - } else if (!tess.fatalError) { - /* The only way fatal error is when two edges are found to intersect, - * but the user has not provided the callback necessary to handle - * generated intersection points. - */ - tess.callErrorOrErrorData(GLU.GLU_TESS_NEED_COMBINE_CALLBACK); - tess.fatalError = true; - } - } - } - - static void SpliceMergeVertices(GLUtessellatorImpl tess, GLUhalfEdge e1, - GLUhalfEdge e2) -/* - * Two vertices with idential coordinates are combined into one. - * e1.Org is kept, while e2.Org is discarded. - */ { - Object[] data = new Object[4]; - float[] weights = new float[]{0.5f, 0.5f, 0.0f, 0.0f}; - - data[0] = e1.Org.data; - data[1] = e2.Org.data; - CallCombine(tess, e1.Org, data, weights, false); - if (!Mesh.__gl_meshSplice(e1, e2)) throw new RuntimeException(); - } - - static void VertexWeights(GLUvertex isect, GLUvertex org, GLUvertex dst, - float[] weights) -/* - * Find some weights which describe how the intersection vertex is - * a linear combination of "org" and "dest". Each of the two edges - * which generated "isect" is allocated 50% of the weight; each edge - * splits the weight between its org and dst according to the - * relative distance to "isect". - */ { - double t1 = Geom.VertL1dist(org, isect); - double t2 = Geom.VertL1dist(dst, isect); - - weights[0] = (float) (0.5 * t2 / (t1 + t2)); - weights[1] = (float) (0.5 * t1 / (t1 + t2)); - isect.coords[0] += weights[0] * org.coords[0] + weights[1] * dst.coords[0]; - isect.coords[1] += weights[0] * org.coords[1] + weights[1] * dst.coords[1]; - isect.coords[2] += weights[0] * org.coords[2] + weights[1] * dst.coords[2]; - } - - - static void GetIntersectData(GLUtessellatorImpl tess, GLUvertex isect, - GLUvertex orgUp, GLUvertex dstUp, - GLUvertex orgLo, GLUvertex dstLo) -/* - * We've computed a new intersection point, now we need a "data" pointer - * from the user so that we can refer to this new vertex in the - * rendering callbacks. - */ { - Object[] data = new Object[4]; - float[] weights = new float[4]; - float[] weights1 = new float[2]; - float[] weights2 = new float[2]; - - data[0] = orgUp.data; - data[1] = dstUp.data; - data[2] = orgLo.data; - data[3] = dstLo.data; - - isect.coords[0] = isect.coords[1] = isect.coords[2] = 0; - VertexWeights(isect, orgUp, dstUp, weights1); - VertexWeights(isect, orgLo, dstLo, weights2); - System.arraycopy(weights1, 0, weights, 0, 2); - System.arraycopy(weights2, 0, weights, 2, 2); - - CallCombine(tess, isect, data, weights, true); - } - - static boolean CheckForRightSplice(GLUtessellatorImpl tess, ActiveRegion regUp) -/* - * Check the upper and lower edge of "regUp", to make sure that the - * eUp.Org is above eLo, or eLo.Org is below eUp (depending on which - * origin is leftmost). - * - * The main purpose is to splice right-going edges with the same - * dest vertex and nearly identical slopes (ie. we can't distinguish - * the slopes numerically). However the splicing can also help us - * to recover from numerical errors. For example, suppose at one - * point we checked eUp and eLo, and decided that eUp.Org is barely - * above eLo. Then later, we split eLo into two edges (eg. from - * a splice operation like this one). This can change the result of - * our test so that now eUp.Org is incident to eLo, or barely below it. - * We must correct this condition to maintain the dictionary invariants. - * - * One possibility is to check these edges for intersection again - * (ie. CheckForIntersect). This is what we do if possible. However - * CheckForIntersect requires that tess.event lies between eUp and eLo, - * so that it has something to fall back on when the intersection - * calculation gives us an unusable answer. So, for those cases where - * we can't check for intersection, this routine fixes the problem - * by just splicing the offending vertex into the other edge. - * This is a guaranteed solution, no matter how degenerate things get. - * Basically this is a combinatorial solution to a numerical problem. - */ { - ActiveRegion regLo = RegionBelow(regUp); - GLUhalfEdge eUp = regUp.eUp; - GLUhalfEdge eLo = regLo.eUp; - - if (Geom.VertLeq(eUp.Org, eLo.Org)) { - if (Geom.EdgeSign(eLo.Sym.Org, eUp.Org, eLo.Org) > 0) return false; - - /* eUp.Org appears to be below eLo */ - if (!Geom.VertEq(eUp.Org, eLo.Org)) { - /* Splice eUp.Org into eLo */ - if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(eUp, eLo.Sym.Lnext)) throw new RuntimeException(); - regUp.dirty = regLo.dirty = true; - - } else if (eUp.Org != eLo.Org) { - /* merge the two vertices, discarding eUp.Org */ - tess.pq.pqDelete(eUp.Org.pqHandle); /* __gl_pqSortDelete */ - SpliceMergeVertices(tess, eLo.Sym.Lnext, eUp); - } - } else { - if (Geom.EdgeSign(eUp.Sym.Org, eLo.Org, eUp.Org) < 0) return false; - - /* eLo.Org appears to be above eUp, so splice eLo.Org into eUp */ - RegionAbove(regUp).dirty = regUp.dirty = true; - if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException(); - } - return true; - } - - static boolean CheckForLeftSplice(GLUtessellatorImpl tess, ActiveRegion regUp) -/* - * Check the upper and lower edge of "regUp", to make sure that the - * eUp.Sym.Org is above eLo, or eLo.Sym.Org is below eUp (depending on which - * destination is rightmost). - * - * Theoretically, this should always be true. However, splitting an edge - * into two pieces can change the results of previous tests. For example, - * suppose at one point we checked eUp and eLo, and decided that eUp.Sym.Org - * is barely above eLo. Then later, we split eLo into two edges (eg. from - * a splice operation like this one). This can change the result of - * the test so that now eUp.Sym.Org is incident to eLo, or barely below it. - * We must correct this condition to maintain the dictionary invariants - * (otherwise new edges might get inserted in the wrong place in the - * dictionary, and bad stuff will happen). - * - * We fix the problem by just splicing the offending vertex into the - * other edge. - */ { - ActiveRegion regLo = RegionBelow(regUp); - GLUhalfEdge eUp = regUp.eUp; - GLUhalfEdge eLo = regLo.eUp; - GLUhalfEdge e; - - assert (!Geom.VertEq(eUp.Sym.Org, eLo.Sym.Org)); - - if (Geom.VertLeq(eUp.Sym.Org, eLo.Sym.Org)) { - if (Geom.EdgeSign(eUp.Sym.Org, eLo.Sym.Org, eUp.Org) < 0) return false; - - /* eLo.Sym.Org is above eUp, so splice eLo.Sym.Org into eUp */ - RegionAbove(regUp).dirty = regUp.dirty = true; - e = Mesh.__gl_meshSplitEdge(eUp); - if (e == null) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(eLo.Sym, e)) throw new RuntimeException(); - e.Lface.inside = regUp.inside; - } else { - if (Geom.EdgeSign(eLo.Sym.Org, eUp.Sym.Org, eLo.Org) > 0) return false; - - /* eUp.Sym.Org is below eLo, so splice eUp.Sym.Org into eLo */ - regUp.dirty = regLo.dirty = true; - e = Mesh.__gl_meshSplitEdge(eLo); - if (e == null) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym)) throw new RuntimeException(); - e.Sym.Lface.inside = regUp.inside; - } - return true; - } - - - static boolean CheckForIntersect(GLUtessellatorImpl tess, ActiveRegion regUp) -/* - * Check the upper and lower edges of the given region to see if - * they intersect. If so, create the intersection and add it - * to the data structures. - * - * Returns true if adding the new intersection resulted in a recursive - * call to AddRightEdges(); in this case all "dirty" regions have been - * checked for intersections, and possibly regUp has been deleted. - */ { - ActiveRegion regLo = RegionBelow(regUp); - GLUhalfEdge eUp = regUp.eUp; - GLUhalfEdge eLo = regLo.eUp; - GLUvertex orgUp = eUp.Org; - GLUvertex orgLo = eLo.Org; - GLUvertex dstUp = eUp.Sym.Org; - GLUvertex dstLo = eLo.Sym.Org; - double tMinUp, tMaxLo; - GLUvertex isect = new GLUvertex(); - GLUvertex orgMin; - GLUhalfEdge e; - - assert (!Geom.VertEq(dstLo, dstUp)); - assert (Geom.EdgeSign(dstUp, tess.event, orgUp) <= 0); - assert (Geom.EdgeSign(dstLo, tess.event, orgLo) >= 0); - assert (orgUp != tess.event && orgLo != tess.event); - assert (!regUp.fixUpperEdge && !regLo.fixUpperEdge); - - if (orgUp == orgLo) return false; /* right endpoints are the same */ - - tMinUp = Math.min(orgUp.t, dstUp.t); - tMaxLo = Math.max(orgLo.t, dstLo.t); - if (tMinUp > tMaxLo) return false; /* t ranges do not overlap */ - - if (Geom.VertLeq(orgUp, orgLo)) { - if (Geom.EdgeSign(dstLo, orgUp, orgLo) > 0) return false; - } else { - if (Geom.EdgeSign(dstUp, orgLo, orgUp) < 0) return false; - } - - /* At this point the edges intersect, at least marginally */ - DebugEvent(tess); - - Geom.EdgeIntersect(dstUp, orgUp, dstLo, orgLo, isect); - /* The following properties are guaranteed: */ - assert (Math.min(orgUp.t, dstUp.t) <= isect.t); - assert (isect.t <= Math.max(orgLo.t, dstLo.t)); - assert (Math.min(dstLo.s, dstUp.s) <= isect.s); - assert (isect.s <= Math.max(orgLo.s, orgUp.s)); - - if (Geom.VertLeq(isect, tess.event)) { - /* The intersection point lies slightly to the left of the sweep line, - * so move it until it''s slightly to the right of the sweep line. - * (If we had perfect numerical precision, this would never happen - * in the first place). The easiest and safest thing to do is - * replace the intersection by tess.event. - */ - isect.s = tess.event.s; - isect.t = tess.event.t; - } - /* Similarly, if the computed intersection lies to the right of the - * rightmost origin (which should rarely happen), it can cause - * unbelievable inefficiency on sufficiently degenerate inputs. - * (If you have the test program, try running test54.d with the - * "X zoom" option turned on). - */ - orgMin = Geom.VertLeq(orgUp, orgLo) ? orgUp : orgLo; - if (Geom.VertLeq(orgMin, isect)) { - isect.s = orgMin.s; - isect.t = orgMin.t; - } - - if (Geom.VertEq(isect, orgUp) || Geom.VertEq(isect, orgLo)) { - /* Easy case -- intersection at one of the right endpoints */ - CheckForRightSplice(tess, regUp); - return false; - } - - if ((!Geom.VertEq(dstUp, tess.event) - && Geom.EdgeSign(dstUp, tess.event, isect) >= 0) - || (!Geom.VertEq(dstLo, tess.event) - && Geom.EdgeSign(dstLo, tess.event, isect) <= 0)) { - /* Very unusual -- the new upper or lower edge would pass on the - * wrong side of the sweep event, or through it. This can happen - * due to very small numerical errors in the intersection calculation. - */ - if (dstLo == tess.event) { - /* Splice dstLo into eUp, and process the new region(s) */ - if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(eLo.Sym, eUp)) throw new RuntimeException(); - regUp = TopLeftRegion(regUp); - if (regUp == null) throw new RuntimeException(); - eUp = RegionBelow(regUp).eUp; - FinishLeftRegions(tess, RegionBelow(regUp), regLo); - AddRightEdges(tess, regUp, eUp.Sym.Lnext, eUp, eUp, true); - return true; - } - if (dstUp == tess.event) { - /* Splice dstUp into eLo, and process the new region(s) */ - if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym.Lnext)) throw new RuntimeException(); - regLo = regUp; - regUp = TopRightRegion(regUp); - e = RegionBelow(regUp).eUp.Sym.Onext; - regLo.eUp = eLo.Sym.Lnext; - eLo = FinishLeftRegions(tess, regLo, null); - AddRightEdges(tess, regUp, eLo.Onext, eUp.Sym.Onext, e, true); - return true; - } - /* Special case: called from ConnectRightVertex. If either - * edge passes on the wrong side of tess.event, split it - * (and wait for ConnectRightVertex to splice it appropriately). - */ - if (Geom.EdgeSign(dstUp, tess.event, isect) >= 0) { - RegionAbove(regUp).dirty = regUp.dirty = true; - if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException(); - eUp.Org.s = tess.event.s; - eUp.Org.t = tess.event.t; - } - if (Geom.EdgeSign(dstLo, tess.event, isect) <= 0) { - regUp.dirty = regLo.dirty = true; - if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException(); - eLo.Org.s = tess.event.s; - eLo.Org.t = tess.event.t; - } - /* leave the rest for ConnectRightVertex */ - return false; - } - - /* General case -- split both edges, splice into new vertex. - * When we do the splice operation, the order of the arguments is - * arbitrary as far as correctness goes. However, when the operation - * creates a new face, the work done is proportional to the size of - * the new face. We expect the faces in the processed part of - * the mesh (ie. eUp.Lface) to be smaller than the faces in the - * unprocessed original contours (which will be eLo.Sym.Lnext.Lface). - */ - if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException(); - if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException(); - if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException(); - eUp.Org.s = isect.s; - eUp.Org.t = isect.t; - eUp.Org.pqHandle = tess.pq.pqInsert(eUp.Org); /* __gl_pqSortInsert */ - if (eUp.Org.pqHandle == Long.MAX_VALUE) { - tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */ - tess.pq = null; - throw new RuntimeException(); - } - GetIntersectData(tess, eUp.Org, orgUp, dstUp, orgLo, dstLo); - RegionAbove(regUp).dirty = regUp.dirty = regLo.dirty = true; - return false; - } - - static void WalkDirtyRegions(GLUtessellatorImpl tess, ActiveRegion regUp) -/* - * When the upper or lower edge of any region changes, the region is - * marked "dirty". This routine walks through all the dirty regions - * and makes sure that the dictionary invariants are satisfied - * (see the comments at the beginning of this file). Of course - * new dirty regions can be created as we make changes to restore - * the invariants. - */ { - ActiveRegion regLo = RegionBelow(regUp); - GLUhalfEdge eUp, eLo; - - for (; ;) { - /* Find the lowest dirty region (we walk from the bottom up). */ - while (regLo.dirty) { - regUp = regLo; - regLo = RegionBelow(regLo); - } - if (!regUp.dirty) { - regLo = regUp; - regUp = RegionAbove(regUp); - if (regUp == null || !regUp.dirty) { - /* We've walked all the dirty regions */ - return; - } - } - regUp.dirty = false; - eUp = regUp.eUp; - eLo = regLo.eUp; - - if (eUp.Sym.Org != eLo.Sym.Org) { - /* Check that the edge ordering is obeyed at the Dst vertices. */ - if (CheckForLeftSplice(tess, regUp)) { - - /* If the upper or lower edge was marked fixUpperEdge, then - * we no longer need it (since these edges are needed only for - * vertices which otherwise have no right-going edges). - */ - if (regLo.fixUpperEdge) { - DeleteRegion(tess, regLo); - if (!Mesh.__gl_meshDelete(eLo)) throw new RuntimeException(); - regLo = RegionBelow(regUp); - eLo = regLo.eUp; - } else if (regUp.fixUpperEdge) { - DeleteRegion(tess, regUp); - if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException(); - regUp = RegionAbove(regLo); - eUp = regUp.eUp; - } - } - } - if (eUp.Org != eLo.Org) { - if (eUp.Sym.Org != eLo.Sym.Org - && !regUp.fixUpperEdge && !regLo.fixUpperEdge - && (eUp.Sym.Org == tess.event || eLo.Sym.Org == tess.event)) { - /* When all else fails in CheckForIntersect(), it uses tess.event - * as the intersection location. To make this possible, it requires - * that tess.event lie between the upper and lower edges, and also - * that neither of these is marked fixUpperEdge (since in the worst - * case it might splice one of these edges into tess.event, and - * violate the invariant that fixable edges are the only right-going - * edge from their associated vertex). - */ - if (CheckForIntersect(tess, regUp)) { - /* WalkDirtyRegions() was called recursively; we're done */ - return; - } - } else { - /* Even though we can't use CheckForIntersect(), the Org vertices - * may violate the dictionary edge ordering. Check and correct this. - */ - CheckForRightSplice(tess, regUp); - } - } - if (eUp.Org == eLo.Org && eUp.Sym.Org == eLo.Sym.Org) { - /* A degenerate loop consisting of only two edges -- delete it. */ - AddWinding(eLo, eUp); - DeleteRegion(tess, regUp); - if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException(); - regUp = RegionAbove(regLo); - } - } - } - - - static void ConnectRightVertex(GLUtessellatorImpl tess, ActiveRegion regUp, - GLUhalfEdge eBottomLeft) -/* - * Purpose: connect a "right" vertex vEvent (one where all edges go left) - * to the unprocessed portion of the mesh. Since there are no right-going - * edges, two regions (one above vEvent and one below) are being merged - * into one. "regUp" is the upper of these two regions. - * - * There are two reasons for doing this (adding a right-going edge): - * - if the two regions being merged are "inside", we must add an edge - * to keep them separated (the combined region would not be monotone). - * - in any case, we must leave some record of vEvent in the dictionary, - * so that we can merge vEvent with features that we have not seen yet. - * For example, maybe there is a vertical edge which passes just to - * the right of vEvent; we would like to splice vEvent into this edge. - * - * However, we don't want to connect vEvent to just any vertex. We don''t - * want the new edge to cross any other edges; otherwise we will create - * intersection vertices even when the input data had no self-intersections. - * (This is a bad thing; if the user's input data has no intersections, - * we don't want to generate any false intersections ourselves.) - * - * Our eventual goal is to connect vEvent to the leftmost unprocessed - * vertex of the combined region (the union of regUp and regLo). - * But because of unseen vertices with all right-going edges, and also - * new vertices which may be created by edge intersections, we don''t - * know where that leftmost unprocessed vertex is. In the meantime, we - * connect vEvent to the closest vertex of either chain, and mark the region - * as "fixUpperEdge". This flag says to delete and reconnect this edge - * to the next processed vertex on the boundary of the combined region. - * Quite possibly the vertex we connected to will turn out to be the - * closest one, in which case we won''t need to make any changes. - */ { - GLUhalfEdge eNew; - GLUhalfEdge eTopLeft = eBottomLeft.Onext; - ActiveRegion regLo = RegionBelow(regUp); - GLUhalfEdge eUp = regUp.eUp; - GLUhalfEdge eLo = regLo.eUp; - boolean degenerate = false; - - if (eUp.Sym.Org != eLo.Sym.Org) { - CheckForIntersect(tess, regUp); - } - - /* Possible new degeneracies: upper or lower edge of regUp may pass - * through vEvent, or may coincide with new intersection vertex - */ - if (Geom.VertEq(eUp.Org, tess.event)) { - if (!Mesh.__gl_meshSplice(eTopLeft.Sym.Lnext, eUp)) throw new RuntimeException(); - regUp = TopLeftRegion(regUp); - if (regUp == null) throw new RuntimeException(); - eTopLeft = RegionBelow(regUp).eUp; - FinishLeftRegions(tess, RegionBelow(regUp), regLo); - degenerate = true; - } - if (Geom.VertEq(eLo.Org, tess.event)) { - if (!Mesh.__gl_meshSplice(eBottomLeft, eLo.Sym.Lnext)) throw new RuntimeException(); - eBottomLeft = FinishLeftRegions(tess, regLo, null); - degenerate = true; - } - if (degenerate) { - AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true); - return; - } - - /* Non-degenerate situation -- need to add a temporary, fixable edge. - * Connect to the closer of eLo.Org, eUp.Org. - */ - if (Geom.VertLeq(eLo.Org, eUp.Org)) { - eNew = eLo.Sym.Lnext; - } else { - eNew = eUp; - } - eNew = Mesh.__gl_meshConnect(eBottomLeft.Onext.Sym, eNew); - if (eNew == null) throw new RuntimeException(); - - /* Prevent cleanup, otherwise eNew might disappear before we've even - * had a chance to mark it as a temporary edge. - */ - AddRightEdges(tess, regUp, eNew, eNew.Onext, eNew.Onext, false); - eNew.Sym.activeRegion.fixUpperEdge = true; - WalkDirtyRegions(tess, regUp); - } - -/* Because vertices at exactly the same location are merged together - * before we process the sweep event, some degenerate cases can't occur. - * However if someone eventually makes the modifications required to - * merge features which are close together, the cases below marked - * TOLERANCE_NONZERO will be useful. They were debugged before the - * code to merge identical vertices in the main loop was added. - */ - private static final boolean TOLERANCE_NONZERO = false; - - static void ConnectLeftDegenerate(GLUtessellatorImpl tess, - ActiveRegion regUp, GLUvertex vEvent) -/* - * The event vertex lies exacty on an already-processed edge or vertex. - * Adding the new vertex involves splicing it into the already-processed - * part of the mesh. - */ { - GLUhalfEdge e, eTopLeft, eTopRight, eLast; - ActiveRegion reg; - - e = regUp.eUp; - if (Geom.VertEq(e.Org, vEvent)) { - /* e.Org is an unprocessed vertex - just combine them, and wait - * for e.Org to be pulled from the queue - */ - assert (TOLERANCE_NONZERO); - SpliceMergeVertices(tess, e, vEvent.anEdge); - return; - } - - if (!Geom.VertEq(e.Sym.Org, vEvent)) { - /* General case -- splice vEvent into edge e which passes through it */ - if (Mesh.__gl_meshSplitEdge(e.Sym) == null) throw new RuntimeException(); - if (regUp.fixUpperEdge) { - /* This edge was fixable -- delete unused portion of original edge */ - if (!Mesh.__gl_meshDelete(e.Onext)) throw new RuntimeException(); - regUp.fixUpperEdge = false; - } - if (!Mesh.__gl_meshSplice(vEvent.anEdge, e)) throw new RuntimeException(); - SweepEvent(tess, vEvent); /* recurse */ - return; - } - - /* vEvent coincides with e.Sym.Org, which has already been processed. - * Splice in the additional right-going edges. - */ - assert (TOLERANCE_NONZERO); - regUp = TopRightRegion(regUp); - reg = RegionBelow(regUp); - eTopRight = reg.eUp.Sym; - eTopLeft = eLast = eTopRight.Onext; - if (reg.fixUpperEdge) { - /* Here e.Sym.Org has only a single fixable edge going right. - * We can delete it since now we have some real right-going edges. - */ - assert (eTopLeft != eTopRight); /* there are some left edges too */ - DeleteRegion(tess, reg); - if (!Mesh.__gl_meshDelete(eTopRight)) throw new RuntimeException(); - eTopRight = eTopLeft.Sym.Lnext; - } - if (!Mesh.__gl_meshSplice(vEvent.anEdge, eTopRight)) throw new RuntimeException(); - if (!Geom.EdgeGoesLeft(eTopLeft)) { - /* e.Sym.Org had no left-going edges -- indicate this to AddRightEdges() */ - eTopLeft = null; - } - AddRightEdges(tess, regUp, eTopRight.Onext, eLast, eTopLeft, true); - } - - - static void ConnectLeftVertex(GLUtessellatorImpl tess, GLUvertex vEvent) -/* - * Purpose: connect a "left" vertex (one where both edges go right) - * to the processed portion of the mesh. Let R be the active region - * containing vEvent, and let U and L be the upper and lower edge - * chains of R. There are two possibilities: - * - * - the normal case: split R into two regions, by connecting vEvent to - * the rightmost vertex of U or L lying to the left of the sweep line - * - * - the degenerate case: if vEvent is close enough to U or L, we - * merge vEvent into that edge chain. The subcases are: - * - merging with the rightmost vertex of U or L - * - merging with the active edge of U or L - * - merging with an already-processed portion of U or L - */ { - ActiveRegion regUp, regLo, reg; - GLUhalfEdge eUp, eLo, eNew; - ActiveRegion tmp = new ActiveRegion(); - - /* assert ( vEvent.anEdge.Onext.Onext == vEvent.anEdge ); */ - - /* Get a pointer to the active region containing vEvent */ - tmp.eUp = vEvent.anEdge.Sym; - /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */ - regUp = (ActiveRegion) Dict.dictKey(Dict.dictSearch(tess.dict, tmp)); - regLo = RegionBelow(regUp); - eUp = regUp.eUp; - eLo = regLo.eUp; - - /* Try merging with U or L first */ - if (Geom.EdgeSign(eUp.Sym.Org, vEvent, eUp.Org) == 0) { - ConnectLeftDegenerate(tess, regUp, vEvent); - return; - } - - /* Connect vEvent to rightmost processed vertex of either chain. - * e.Sym.Org is the vertex that we will connect to vEvent. - */ - reg = Geom.VertLeq(eLo.Sym.Org, eUp.Sym.Org) ? regUp : regLo; - - if (regUp.inside || reg.fixUpperEdge) { - if (reg == regUp) { - eNew = Mesh.__gl_meshConnect(vEvent.anEdge.Sym, eUp.Lnext); - if (eNew == null) throw new RuntimeException(); - } else { - GLUhalfEdge tempHalfEdge = Mesh.__gl_meshConnect(eLo.Sym.Onext.Sym, vEvent.anEdge); - if (tempHalfEdge == null) throw new RuntimeException(); - - eNew = tempHalfEdge.Sym; - } - if (reg.fixUpperEdge) { - if (!FixUpperEdge(reg, eNew)) throw new RuntimeException(); - } else { - ComputeWinding(tess, AddRegionBelow(tess, regUp, eNew)); - } - SweepEvent(tess, vEvent); - } else { - /* The new vertex is in a region which does not belong to the polygon. - * We don''t need to connect this vertex to the rest of the mesh. - */ - AddRightEdges(tess, regUp, vEvent.anEdge, vEvent.anEdge, null, true); - } - } - - - static void SweepEvent(GLUtessellatorImpl tess, GLUvertex vEvent) -/* - * Does everything necessary when the sweep line crosses a vertex. - * Updates the mesh and the edge dictionary. - */ { - ActiveRegion regUp, reg; - GLUhalfEdge e, eTopLeft, eBottomLeft; - - tess.event = vEvent; /* for access in EdgeLeq() */ - DebugEvent(tess); - - /* Check if this vertex is the right endpoint of an edge that is - * already in the dictionary. In this case we don't need to waste - * time searching for the location to insert new edges. - */ - e = vEvent.anEdge; - while (e.activeRegion == null) { - e = e.Onext; - if (e == vEvent.anEdge) { - /* All edges go right -- not incident to any processed edges */ - ConnectLeftVertex(tess, vEvent); - return; - } - } - - /* Processing consists of two phases: first we "finish" all the - * active regions where both the upper and lower edges terminate - * at vEvent (ie. vEvent is closing off these regions). - * We mark these faces "inside" or "outside" the polygon according - * to their winding number, and delete the edges from the dictionary. - * This takes care of all the left-going edges from vEvent. - */ - regUp = TopLeftRegion(e.activeRegion); - if (regUp == null) throw new RuntimeException(); - reg = RegionBelow(regUp); - eTopLeft = reg.eUp; - eBottomLeft = FinishLeftRegions(tess, reg, null); - - /* Next we process all the right-going edges from vEvent. This - * involves adding the edges to the dictionary, and creating the - * associated "active regions" which record information about the - * regions between adjacent dictionary edges. - */ - if (eBottomLeft.Onext == eTopLeft) { - /* No right-going edges -- add a temporary "fixable" edge */ - ConnectRightVertex(tess, regUp, eBottomLeft); - } else { - AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true); - } - } - - -/* Make the sentinel coordinates big enough that they will never be - * merged with real input features. (Even with the largest possible - * input contour and the maximum tolerance of 1.0, no merging will be - * done with coordinates larger than 3 * GLU_TESS_MAX_COORD). - */ - private static final double SENTINEL_COORD = (4.0 * GLU.GLU_TESS_MAX_COORD); - - static void AddSentinel(GLUtessellatorImpl tess, double t) -/* - * We add two sentinel edges above and below all other edges, - * to avoid special cases at the top and bottom. - */ { - GLUhalfEdge e; - ActiveRegion reg = new ActiveRegion(); - if (reg == null) throw new RuntimeException(); - - e = Mesh.__gl_meshMakeEdge(tess.mesh); - if (e == null) throw new RuntimeException(); - - e.Org.s = SENTINEL_COORD; - e.Org.t = t; - e.Sym.Org.s = -SENTINEL_COORD; - e.Sym.Org.t = t; - tess.event = e.Sym.Org; /* initialize it */ - - reg.eUp = e; - reg.windingNumber = 0; - reg.inside = false; - reg.fixUpperEdge = false; - reg.sentinel = true; - reg.dirty = false; - reg.nodeUp = Dict.dictInsert(tess.dict, reg); /* __gl_dictListInsertBefore */ - if (reg.nodeUp == null) throw new RuntimeException(); - } - - - static void InitEdgeDict(final GLUtessellatorImpl tess) -/* - * We maintain an ordering of edge intersections with the sweep line. - * This order is maintained in a dynamic dictionary. - */ { - /* __gl_dictListNewDict */ - tess.dict = Dict.dictNewDict(tess, new Dict.DictLeq() { - public boolean leq(Object frame, Object key1, Object key2) { - return EdgeLeq(tess, (ActiveRegion) key1, (ActiveRegion) key2); - } - }); - if (tess.dict == null) throw new RuntimeException(); - - AddSentinel(tess, -SENTINEL_COORD); - AddSentinel(tess, SENTINEL_COORD); - } - - - static void DoneEdgeDict(GLUtessellatorImpl tess) { - ActiveRegion reg; - int fixedEdges = 0; - - /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */ - while ((reg = (ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))) != null) { - /* - * At the end of all processing, the dictionary should contain - * only the two sentinel edges, plus at most one "fixable" edge - * created by ConnectRightVertex(). - */ - if (!reg.sentinel) { - assert (reg.fixUpperEdge); - assert (++fixedEdges == 1); - } - assert (reg.windingNumber == 0); - DeleteRegion(tess, reg); -/* __gl_meshDelete( reg.eUp );*/ - } - Dict.dictDeleteDict(tess.dict); /* __gl_dictListDeleteDict */ - } - - - static void RemoveDegenerateEdges(GLUtessellatorImpl tess) -/* - * Remove zero-length edges, and contours with fewer than 3 vertices. - */ { - GLUhalfEdge e, eNext, eLnext; - GLUhalfEdge eHead = tess.mesh.eHead; - - /*LINTED*/ - for (e = eHead.next; e != eHead; e = eNext) { - eNext = e.next; - eLnext = e.Lnext; - - if (Geom.VertEq(e.Org, e.Sym.Org) && e.Lnext.Lnext != e) { - /* Zero-length edge, contour has at least 3 edges */ - - SpliceMergeVertices(tess, eLnext, e); /* deletes e.Org */ - if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException(); /* e is a self-loop */ - e = eLnext; - eLnext = e.Lnext; - } - if (eLnext.Lnext == e) { - /* Degenerate contour (one or two edges) */ - - if (eLnext != e) { - if (eLnext == eNext || eLnext == eNext.Sym) { - eNext = eNext.next; - } - if (!Mesh.__gl_meshDelete(eLnext)) throw new RuntimeException(); - } - if (e == eNext || e == eNext.Sym) { - eNext = eNext.next; - } - if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException(); - } - } - } - - static boolean InitPriorityQ(GLUtessellatorImpl tess) -/* - * Insert all vertices into the priority queue which determines the - * order in which vertices cross the sweep line. - */ { - PriorityQ pq; - GLUvertex v, vHead; - - /* __gl_pqSortNewPriorityQ */ - pq = tess.pq = PriorityQ.pqNewPriorityQ(new PriorityQ.Leq() { - public boolean leq(Object key1, Object key2) { - return Geom.VertLeq(((GLUvertex) key1), (GLUvertex) key2); - } - }); - if (pq == null) return false; - - vHead = tess.mesh.vHead; - for (v = vHead.next; v != vHead; v = v.next) { - v.pqHandle = pq.pqInsert(v); /* __gl_pqSortInsert */ - if (v.pqHandle == Long.MAX_VALUE) break; - } - if (v != vHead || !pq.pqInit()) { /* __gl_pqSortInit */ - tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */ - tess.pq = null; - return false; - } - - return true; - } - - - static void DonePriorityQ(GLUtessellatorImpl tess) { - tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */ - } - - - static boolean RemoveDegenerateFaces(GLUmesh mesh) -/* - * Delete any degenerate faces with only two edges. WalkDirtyRegions() - * will catch almost all of these, but it won't catch degenerate faces - * produced by splice operations on already-processed edges. - * The two places this can happen are in FinishLeftRegions(), when - * we splice in a "temporary" edge produced by ConnectRightVertex(), - * and in CheckForLeftSplice(), where we splice already-processed - * edges to ensure that our dictionary invariants are not violated - * by numerical errors. - * - * In both these cases it is *very* dangerous to delete the offending - * edge at the time, since one of the routines further up the stack - * will sometimes be keeping a pointer to that edge. - */ { - GLUface f, fNext; - GLUhalfEdge e; - - /*LINTED*/ - for (f = mesh.fHead.next; f != mesh.fHead; f = fNext) { - fNext = f.next; - e = f.anEdge; - assert (e.Lnext != e); - - if (e.Lnext.Lnext == e) { - /* A face with only two edges */ - AddWinding(e.Onext, e); - if (!Mesh.__gl_meshDelete(e)) return false; - } - } - return true; - } - - public static boolean __gl_computeInterior(GLUtessellatorImpl tess) -/* - * __gl_computeInterior( tess ) computes the planar arrangement specified - * by the given contours, and further subdivides this arrangement - * into regions. Each region is marked "inside" if it belongs - * to the polygon, according to the rule given by tess.windingRule. - * Each interior region is guaranteed be monotone. - */ { - GLUvertex v, vNext; - - tess.fatalError = false; - - /* Each vertex defines an event for our sweep line. Start by inserting - * all the vertices in a priority queue. Events are processed in - * lexicographic order, ie. - * - * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y) - */ - RemoveDegenerateEdges(tess); - if (!InitPriorityQ(tess)) return false; /* if error */ - InitEdgeDict(tess); - - /* __gl_pqSortExtractMin */ - while ((v = (GLUvertex) tess.pq.pqExtractMin()) != null) { - for (; ;) { - vNext = (GLUvertex) tess.pq.pqMinimum(); /* __gl_pqSortMinimum */ - if (vNext == null || !Geom.VertEq(vNext, v)) break; - - /* Merge together all vertices at exactly the same location. - * This is more efficient than processing them one at a time, - * simplifies the code (see ConnectLeftDegenerate), and is also - * important for correct handling of certain degenerate cases. - * For example, suppose there are two identical edges A and B - * that belong to different contours (so without this code they would - * be processed by separate sweep events). Suppose another edge C - * crosses A and B from above. When A is processed, we split it - * at its intersection point with C. However this also splits C, - * so when we insert B we may compute a slightly different - * intersection point. This might leave two edges with a small - * gap between them. This kind of error is especially obvious - * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY). - */ - vNext = (GLUvertex) tess.pq.pqExtractMin(); /* __gl_pqSortExtractMin*/ - SpliceMergeVertices(tess, v.anEdge, vNext.anEdge); - } - SweepEvent(tess, v); - } - - /* Set tess.event for debugging purposes */ - /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */ - tess.event = ((ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))).eUp.Org; - DebugEvent(tess); - DoneEdgeDict(tess); - DonePriorityQ(tess); - - if (!RemoveDegenerateFaces(tess.mesh)) return false; - Mesh.__gl_meshCheckMesh(tess.mesh); - - return true; - } -} |