1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/**
* Copyright 2010 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package jogamp.graph.curve.tess;
import java.util.ArrayList;
import jogamp.graph.math.VectorFloatUtil;
import com.jogamp.graph.geom.AABBox;
import com.jogamp.graph.geom.PointTex;
import com.jogamp.graph.geom.Triangle;
public class Loop <T extends PointTex> {
private HEdge<T> root = null;
private AABBox box = new AABBox();
private GraphOutline<T> initialOutline = null;
public Loop(GraphOutline<T> polyline, int direction){
initialOutline = polyline;
this.root = initFromPolyline(initialOutline, direction);
}
public HEdge<T> getHEdge(){
return root;
}
public Triangle<T> cut(boolean delaunay){
if(isSimplex()){
@SuppressWarnings("unchecked")
Triangle<T> t = new Triangle<T>(root.getGraphPoint().getPoint(), root.getNext().getGraphPoint().getPoint(),
root.getNext().getNext().getGraphPoint().getPoint());
t.setVerticesBoundary(checkVerticesBoundary(root));
return t;
}
HEdge<T> prev = root.getPrev();
HEdge<T> next1 = root.getNext();
HEdge<T> next2 =findClosestValidNeighbor(next1.getNext(), delaunay);
if(next2 == null){
root = root.getNext();
return null;
}
GraphPoint<T> v1 = root.getGraphPoint();
GraphPoint<T> v2 = next1.getGraphPoint();
GraphPoint<T> v3 = next2.getGraphPoint();
HEdge<T> v3Edge = new HEdge<T>(v3, HEdge.INNER);
HEdge.connect(v3Edge, root);
HEdge.connect(next1, v3Edge);
HEdge<T> v3EdgeSib = v3Edge.getSibling();
if(v3EdgeSib == null){
v3EdgeSib = new HEdge<T>(v3Edge.getNext().getGraphPoint(), HEdge.INNER);
HEdge.makeSiblings(v3Edge, v3EdgeSib);
}
HEdge.connect(prev, v3EdgeSib);
HEdge.connect(v3EdgeSib, next2);
Triangle<T> t = createTriangle(v1.getPoint(), v2.getPoint(), v3.getPoint(), root);
this.root = next2;
return t;
}
public boolean isSimplex(){
return (root.getNext().getNext().getNext() == root);
}
/**Create a connected list of half edges (loop)
* from the boundary profile
* @param direction requested winding of edges (CCW or CW)
*/
private HEdge<T> initFromPolyline(GraphOutline<T> outline, int direction){
ArrayList<GraphPoint<T>> vertices = outline.getGraphPoint();
if(vertices.size()<3) {
throw new IllegalArgumentException("outline's vertices < 3: " + vertices.size());
}
boolean isCCW = VectorFloatUtil.ccw(vertices.get(0).getPoint(), vertices.get(1).getPoint(),
vertices.get(2).getPoint());
boolean invert = isCCW && (direction == VectorFloatUtil.CW);
HEdge<T> firstEdge = null;
HEdge<T> lastEdge = null;
int index =0;
int max = vertices.size();
int edgeType = HEdge.BOUNDARY;
if(invert){
index = vertices.size() -1;
max = -1;
edgeType = HEdge.HOLE;
}
while(index != max){
GraphPoint<T> v1 = vertices.get(index);
box.resize(v1.getX(), v1.getY(), v1.getZ());
HEdge<T> edge = new HEdge<T>(v1, edgeType);
v1.addEdge(edge);
if(lastEdge != null){
lastEdge.setNext(edge);
edge.setPrev(lastEdge);
}
else{
firstEdge = edge;
}
if(!invert){
if(index == vertices.size()-1){
edge.setNext(firstEdge);
firstEdge.setPrev(edge);
}
}
else if (index == 0){
edge.setNext(firstEdge);
firstEdge.setPrev(edge);
}
lastEdge = edge;
if(!invert){
index++;
}
else{
index--;
}
}
return firstEdge;
}
public void addConstraintCurve(GraphOutline<T> polyline) {
// GraphOutline outline = new GraphOutline(polyline);
/**needed to generate vertex references.*/
initFromPolyline(polyline, VectorFloatUtil.CW);
GraphPoint<T> v3 = locateClosestVertex(polyline);
HEdge<T> v3Edge = v3.findBoundEdge();
HEdge<T> v3EdgeP = v3Edge.getPrev();
HEdge<T> crossEdge = new HEdge<T>(root.getGraphPoint(), HEdge.INNER);
HEdge.connect(root.getPrev(), crossEdge);
HEdge.connect(crossEdge, v3Edge);
HEdge<T> crossEdgeSib = crossEdge.getSibling();
if(crossEdgeSib == null) {
crossEdgeSib = new HEdge<T>(crossEdge.getNext().getGraphPoint(), HEdge.INNER);
HEdge.makeSiblings(crossEdge, crossEdgeSib);
}
HEdge.connect(v3EdgeP, crossEdgeSib);
HEdge.connect(crossEdgeSib, root);
}
/** Locates the vertex and update the loops root
* to have (root + vertex) as closest pair
* @param polyline the control polyline
* to search for closestvertices
* @return the vertex that is closest to the newly set root Hedge.
*/
private GraphPoint<T> locateClosestVertex(GraphOutline<T> polyline) {
HEdge<T> closestE = null;
GraphPoint<T> closestV = null;
float minDistance = Float.MAX_VALUE;
boolean inValid = false;
ArrayList<GraphPoint<T>> initVertices = initialOutline.getGraphPoint();
ArrayList<GraphPoint<T>> vertices = polyline.getGraphPoint();
for(int i=0; i< initVertices.size()-1; i++){
GraphPoint<T> v = initVertices.get(i);
GraphPoint<T> nextV = initVertices.get(i+1);
for(GraphPoint<T> cand:vertices){
float distance = VectorFloatUtil.computeLength(v.getCoord(), cand.getCoord());
if(distance < minDistance){
for (GraphPoint<T> vert:vertices){
if(vert == v || vert == nextV || vert == cand)
continue;
inValid = VectorFloatUtil.inCircle(v.getPoint(), nextV.getPoint(),
cand.getPoint(), vert.getPoint());
if(inValid){
break;
}
}
if(!inValid){
closestV = cand;
minDistance = distance;
closestE = v.findBoundEdge();
}
}
}
}
if(closestE != null){
root = closestE;
}
return closestV;
}
private HEdge<T> findClosestValidNeighbor(HEdge<T> edge, boolean delaunay) {
HEdge<T> next = root.getNext();
if(!VectorFloatUtil.ccw(root.getGraphPoint().getPoint(), next.getGraphPoint().getPoint(),
edge.getGraphPoint().getPoint())){
return null;
}
HEdge<T> candEdge = edge;
boolean inValid = false;
if(delaunay){
T cand = candEdge.getGraphPoint().getPoint();
HEdge<T> e = candEdge.getNext();
while (e != candEdge){
if(e.getGraphPoint() == root.getGraphPoint()
|| e.getGraphPoint() == next.getGraphPoint()
|| e.getGraphPoint().getPoint() == cand){
e = e.getNext();
continue;
}
inValid = VectorFloatUtil.inCircle(root.getGraphPoint().getPoint(), next.getGraphPoint().getPoint(),
cand, e.getGraphPoint().getPoint());
if(inValid){
break;
}
e = e.getNext();
}
}
if(!inValid){
return candEdge;
}
return null;
}
/** Create a triangle from the param vertices only if
* the triangle is valid. IE not outside region.
* @param v1 vertex 1
* @param v2 vertex 2
* @param v3 vertex 3
* @param root and edge of this triangle
* @return the triangle iff it satisfies, null otherwise
*/
private Triangle<T> createTriangle(T v1, T v2, T v3, HEdge<T> rootT){
@SuppressWarnings("unchecked")
Triangle<T> t = new Triangle<T>(v1, v2, v3);
t.setVerticesBoundary(checkVerticesBoundary(rootT));
return t;
}
private boolean[] checkVerticesBoundary(HEdge<T> rootT) {
boolean[] boundary = new boolean[3];
HEdge<T> e1 = rootT;
HEdge<T> e2 = rootT.getNext();
HEdge<T> e3 = rootT.getNext().getNext();
if(e1.getGraphPoint().isBoundaryContained()){
boundary[0] = true;
}
if(e2.getGraphPoint().isBoundaryContained()){
boundary[1] = true;
}
if(e3.getGraphPoint().isBoundaryContained()){
boundary[2] = true;
}
return boundary;
}
/** Check if vertex inside the Loop
* @param vertex the Vertex
* @return true if the vertex is inside, false otherwise
*/
public boolean checkInside(T vertex) {
if(!box.contains(vertex.getX(), vertex.getY(), vertex.getZ())){
return false;
}
float[] center = box.getCenter();
int hits = 0;
HEdge<T> current = root;
HEdge<T> next = root.getNext();
while(next!= root){
if(current.getType() == HEdge.INNER || next.getType() == HEdge.INNER){
current = next;
next = current.getNext();
continue;
}
T vert1 = current.getGraphPoint().getPoint();
T vert2 = next.getGraphPoint().getPoint();
/** The ray is P0+s*D0, where P0 is the ray origin, D0 is a direction vector and s >= 0.
* The segment is P1+t*D1, where P1 and P1+D1 are the endpoints, and 0 <= t <= 1.
* perp(x,y) = (y,-x).
* if Dot(perp(D1),D0) is not zero,
* s = Dot(perp(D1),P1-P0)/Dot(perp(D1),D0)
* t = Dot(perp(D0),P1-P0)/Dot(perp(D1),D0)
*/
float[] d0 = new float[]{center[0] - vertex.getX(), center[1]-vertex.getY(),
center[2]-vertex.getZ()};
float[] d1 = {vert2.getX() - vert1.getX(), vert2.getY() - vert1.getY(),
vert2.getZ() - vert1.getZ()};
float[] prepD1 = {d1[1],-1*d1[0], d1[2]};
float[] prepD0 = {d0[1],-1*d0[0], d0[2]};
float[] p0p1 = new float[]{vert1.getX() - vertex.getX(), vert1.getY() - vertex.getY(),
vert1.getZ() - vertex.getZ()};
float dotD1D0 = VectorFloatUtil.dot(prepD1, d0);
if(dotD1D0 == 0){
/** ray parallel to segment */
current = next;
next = current.getNext();
continue;
}
float s = VectorFloatUtil.dot(prepD1,p0p1)/dotD1D0;
float t = VectorFloatUtil.dot(prepD0,p0p1)/dotD1D0;
if(s >= 0 && t >= 0 && t<= 1){
hits++;
}
current = next;
next = current.getNext();
}
if(hits % 2 != 0){
/** check if hit count is even */
return true;
}
return false;
}
public int computeLoopSize(){
int size = 0;
HEdge<T> e = root;
do{
size++;
e = e.getNext();
}while(e != root);
return size;
}
}
|