aboutsummaryrefslogtreecommitdiffstats
path: root/src/jogl/classes/com/jogamp/graph/curve/OutlineShape.java
blob: 0c42e791c1794fc0013c0789a07530be458bd265 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
/**
 * Copyright 2010-2024 JogAmp Community. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *    1. Redistributions of source code must retain the above copyright notice, this list of
 *       conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the above copyright notice, this list
 *       of conditions and the following disclaimer in the documentation and/or other materials
 *       provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are those of the
 * authors and should not be interpreted as representing official policies, either expressed
 * or implied, of JogAmp Community.
 */
package com.jogamp.graph.curve;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;

import com.jogamp.graph.curve.tess.Triangulation;
import com.jogamp.graph.curve.tess.Triangulator;
import com.jogamp.graph.geom.Outline;
import com.jogamp.graph.geom.Triangle;
import com.jogamp.graph.geom.Vertex;
import com.jogamp.math.FloatUtil;
import com.jogamp.math.Vec3f;
import com.jogamp.math.VectorUtil;
import com.jogamp.math.Vert2fImmutable;
import com.jogamp.math.geom.AABBox;
import com.jogamp.math.geom.plane.AffineTransform;
import com.jogamp.math.geom.plane.Path2F;
import com.jogamp.math.geom.plane.Winding;

import jogamp.opengl.Debug;

/**
 * A Generic shape objects which is defined by a list of Outlines.
 * This Shape can be transformed to triangulations.
 * The list of triangles generated are render-able by a Region object.
 * The triangulation produced by this Shape will define the
 * closed region defined by the outlines.
 * <p>
 * One or more OutlineShape Object can be associated to a region
 * this is left as a high-level representation of the Objects. For
 * optimizations, flexibility requirements for future features.
 * </p>
 * <p>
 * <a name="windingrules">
 * Outline shape general {@link Winding} rules
 * <ul>
 *   <li>Outer boundary-shapes are required as {@link Winding#CCW}</li>
 *   <li>Inner hole-shapes should be {@link Winding#CW}</li>
 *   <li>If unsure
 *   <ul>
 *     <li>You may check {@link Winding} via {@link #getWindingOfLastOutline()} or {@link Outline#getWinding()} (optional, might be incorrect)</li>
 *     <li>Use {@link #setWindingOfLastOutline(Winding)} before {@link #closeLastOutline(boolean)} or {@link #closePath()} } to enforce {@link Winding#CCW}, or</li>
 *     <li>use {@link Outline#setWinding(Winding)} on a specific {@link Outline} to enforce {@link Winding#CCW}.</li>
 *     <li>If e.g. the {@link Winding} has changed for an {@link Outline} by above operations, its vertices have been reversed.</li>
 *   </ul></li>
 *   <li>Safe path: Simply create all outer boundary-shapes with {@link Winding#CCW} and inner hole-shapes with {@link Winding#CW}.</li>
 * </ul>
 * </p>
 * Example to creating an Outline Shape:
 * <pre>
      addVertex(...)
      addVertex(...)
      addVertex(...)
      addEmptyOutline()
      addVertex(...)
      addVertex(...)
      addVertex(...)
 * </pre>
 *
 * <p>
 * The above will create two outlines each with three vertices. By adding these two outlines to
 * the OutlineShape, we are stating that the combination of the two outlines represent the shape.
 * </p>
 * <p>
 * To specify that the shape is curved at a region, the on-curve flag should be set to false
 * for the vertex that is in the middle of the curved region (if the curved region is defined by 3
 * vertices (quadratic curve).
 * </p>
 * <p>
 * In case the curved region is defined by 4 or more vertices the middle vertices should both have
 * the on-curve flag set to false.
 * </p>
 * Example:
 * <pre>
      addVertex(0,0, true);
      addVertex(0,1, false);
      addVertex(1,1, false);
      addVertex(1,0, true);
 * </pre>
 * <p>
 * The above snippet defines a cubic nurbs curve where (0,1 and 1,1)
 * do not belong to the final rendered shape.
 * </p>
 *
 * <i>Implementation Notes:</i><br>
 * <ul>
 *    <li> The first vertex of any outline belonging to the shape should be on-curve</li>
 *    <li> Intersections between off-curved parts of the outline is not handled</li>
 * </ul>
 *
 * @see Outline
 * @see Region
 */
public final class OutlineShape implements Comparable<OutlineShape> {
    private static final boolean FORCE_COMPLEXSHAPE = Debug.debug("graph.curve.triangulation.force.complexshape");
    private static final boolean FORCE_SIMPLESHAPE = Debug.debug("graph.curve.triangulation.force.simpleshape");

    /**
     * Outline's vertices have undefined state until transformed.
     */
    public enum VerticesState {
        UNDEFINED(0), QUADRATIC_NURBS(1);

        public final int state;

        VerticesState(final int state){
            this.state = state;
        }
    }

    /** Initial {@link #getSharpness()} value, which can be modified via {@link #setSharpness(float)}. */
    public static final float DEFAULT_SHARPNESS = 0.5f;

    private static final int DIRTY_BOUNDS = 1 << 0;
    /**
     * Modified shape, requires to update the vertices and triangles, here: vertices.
     */
    private static final int DIRTY_VERTICES  = 1 << 1;
    /**
     * Modified shape, requires to update the vertices and triangles, here: triangulation.
     */
    private static final int DIRTY_TRIANGLES  = 1 << 2;
    /**
     * Modified shape, requires to update the convex determination
     */
    private static final int DIRTY_CONVEX  = 1 << 3;
    private static final int OVERRIDE_CONVEX  = 1 << 4;

    /** The list of {@link Outline}s that are part of this
     *  outline shape.
     */
    /* pp */ final ArrayList<Outline> outlines;

    private final AABBox bbox;
    private final ArrayList<Triangle> triangles;
    private final ArrayList<Vertex> vertices;
    private int addedVerticeCount;
    private boolean complexShape;

    private VerticesState outlineState;

    /** dirty bits DIRTY_BOUNDS */
    private int dirtyBits;

    private float sharpness;

    private final Vec3f tmpV1 = new Vec3f();
    private final Vec3f tmpV2 = new Vec3f();
    private final Vec3f tmpV3 = new Vec3f();
    // COLOR
    // private final Vec4f tmpC1 = new Vec4f();
    // private final Vec4f tmpC2 = new Vec4f();
    // private final Vec4f tmpC3 = new Vec4f();

    /**
     * Create a new Outline based Shape
     */
    public OutlineShape() {
        this.outlines = new ArrayList<Outline>(3);
        this.outlines.add(new Outline());
        this.outlineState = VerticesState.UNDEFINED;
        this.bbox = new AABBox();
        this.triangles = new ArrayList<Triangle>();
        this.vertices = new ArrayList<Vertex>();
        this.addedVerticeCount = 0;
        if( FORCE_COMPLEXSHAPE ) {
            complexShape = true;
        } else {
            complexShape = false;
        }
        this.dirtyBits = 0;
        this.sharpness = DEFAULT_SHARPNESS;
    }

    /**
     * Return the number of newly added vertices during {@link #getTriangles(VerticesState)}
     * while transforming the outlines to {@link VerticesState#QUADRATIC_NURBS} and triangulation.
     * @see #setIsQuadraticNurbs()
     */
    public final int getAddedVerticeCount() {
        return addedVerticeCount;
    }

    /** Sharpness value, defaults to {@link #DEFAULT_SHARPNESS}. */
    public final float getSharpness() { return sharpness; }

    /** Sets sharpness, defaults to {@link #DEFAULT_SHARPNESS}. */
    public final void setSharpness(final float s) {
        if( this.sharpness != s ) {
            clearCache();
            sharpness=s;
        }
    }

    /** Clears all data and reset all states as if this instance was newly created */
    public final void clear() {
        outlines.clear();
        outlines.add(new Outline());
        outlineState = VerticesState.UNDEFINED;
        bbox.reset();
        vertices.clear();
        triangles.clear();
        addedVerticeCount = 0;
        if( FORCE_COMPLEXSHAPE ) {
            complexShape = true;
        } else {
            complexShape = false;
        }
        dirtyBits = 0;
    }

    /** Clears cached triangulated data, i.e. {@link #getTriangles(VerticesState)} and {@link #getVertices()}.  */
    public final void clearCache() {
        vertices.clear();
        triangles.clear();
        dirtyBits |= DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
    }

    /** Returns the number of {@link Outline}s. */
    public final int getOutlineCount() {
        return outlines.size();
    }

    /** Returns the total {@link Outline#getVertexCount() vertex number} of all {@link Outline}s. */
    public final int getVertexCount() {
        int res = 0;
        for(final Outline o : outlines) {
            res += o.getVertexCount();
        }
        return res;
    }

    /**
     * Compute the {@link Winding} of the {@link #getLastOutline()} using the {@link VectorUtil#area(ArrayList)} function over all of its vertices.
     * @return {@link Winding#CCW} or {@link Winding#CW}
     */
    public final Winding getWindingOfLastOutline() {
        return getLastOutline().getWinding();
    }

    /**
     * Sets the enforced {@link Winding} of the {@link #getLastOutline()}.
     */
    public final void setWindingOfLastOutline(final Winding enforced) {
        getLastOutline().setWinding(enforced);
    }

    /**
     * Returns cached or computed result if at least one {@code polyline} of {@link #getOutline(int)} is a complex shape, see {@link Outline#isComplex()}.
     * <p>
     * A polyline with less than 3 elements is marked a simple shape for simplicity.
     * </p>
     * <p>
     * The result is cached.
     * </p>
     * @see #setOverrideConvex(boolean)
     * @see #clearOverrideConvex()
     */
    public boolean isComplex() {
        if( !FORCE_COMPLEXSHAPE && !FORCE_SIMPLESHAPE &&
            0 == ( OVERRIDE_CONVEX & dirtyBits ) &&
            0 != ( DIRTY_CONVEX & dirtyBits ) )
        {
            complexShape = false;
            final int sz = this.getOutlineCount();
            for(int i=0; i<sz && !complexShape; ++i) {
                complexShape = getOutline(i).isComplex();
            }
            dirtyBits &= ~DIRTY_CONVEX;
        }
        return complexShape;
    }
    /**
     * Overrides {@link #isComplex()} using the given value instead of computing via {@link Outline#isComplex()}.
     * @see #clearOverrideConvex()
     * @see #isComplex()
     */
    public void setOverrideConvex(final boolean convex) {
        if( !FORCE_COMPLEXSHAPE && !FORCE_SIMPLESHAPE ) {
            dirtyBits |= OVERRIDE_CONVEX;
            complexShape = convex;
        }
    }
    /**
     * Clears the {@link #isComplex()} override done by {@link #setOverrideConvex(boolean)}
     * @see #setOverrideConvex(boolean)
     * @see #isComplex()
     */
    public void clearOverrideConvex() {
        dirtyBits &= ~OVERRIDE_CONVEX;
        dirtyBits |= DIRTY_CONVEX;
    }

    /**
     * Add a new empty {@link Outline}
     * to the end of this shape's outline list.
     * <p>If the {@link #getLastOutline()} is empty already, no new one will be added.</p>
     *
     * After a call to this function all new vertices added
     * will belong to the new outline
     */
    public final void addEmptyOutline() {
        if( !getLastOutline().isEmpty() ) {
            outlines.add(new Outline());
        }
    }

    /**
     * Appends the {@link Outline} element to the end,
     * ensuring a clean tail.
     *
     * <p>A clean tail is ensured, no double empty Outlines are produced
     * and a pre-existing empty outline will be replaced with the given one. </p>
     *
     * @param outline Outline object to be added
     * @throws NullPointerException if the  {@link Outline} element is null
     */
    public final void addOutline(final Outline outline) throws NullPointerException {
        addOutline(outlines.size(), outline);
    }

    /**
     * Insert the {@link Outline} element at the given {@code position}.
     *
     * <p>If the {@code position} indicates the end of this list,
     * a clean tail is ensured, no double empty Outlines are produced
     * and a pre-existing empty outline will be replaced with the given one. </p>
     *
     * @param position of the added Outline
     * @param outline Outline object to be added
     * @throws NullPointerException if the  {@link Outline} element is null
     * @throws IndexOutOfBoundsException if position is out of range (position < 0 || position > getOutlineNumber())
     */
    public final void addOutline(final int position, final Outline outline) throws NullPointerException, IndexOutOfBoundsException {
        if (null == outline) {
            throw new NullPointerException("outline is null");
        }
        if( outlines.size() == position ) {
            final Outline lastOutline = getLastOutline();
            if( outline.isEmpty() && lastOutline.isEmpty() ) {
                return;
            }
            if( lastOutline.isEmpty() ) {
                outlines.set(position-1, outline);
                if( 0 == ( dirtyBits & DIRTY_BOUNDS ) ) {
                    bbox.resize(outline.getBounds());
                }
                // vertices.addAll(outline.getVertices()); // FIXME: can do and remove DIRTY_VERTICES ?
                dirtyBits |= DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
                return;
            }
        }
        outlines.add(position, outline);
        if( 0 == ( dirtyBits & DIRTY_BOUNDS ) ) {
            bbox.resize(outline.getBounds());
        }
        dirtyBits |= DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
    }

    /**
     * Insert the {@link OutlineShape} elements of type {@link Outline}, .. at the end of this shape,
     * using {@link #addOutline(Outline)} for each element.
     * <p>Closes the current last outline via {@link #closeLastOutline(boolean)} before adding the new ones.</p>
     * @param outlineShape OutlineShape elements to be added.
     * @throws NullPointerException if the  {@link OutlineShape} is null
     * @throws IndexOutOfBoundsException if position is out of range (position < 0 || position > getOutlineNumber())
     */
    public final void addOutlineShape(final OutlineShape outlineShape) throws NullPointerException {
        if (null == outlineShape) {
            throw new NullPointerException("OutlineShape is null");
        }
        closeLastOutline(true);
        for(int i=0; i<outlineShape.getOutlineCount(); i++) {
            addOutline(outlineShape.getOutline(i));
        }
    }

    /**
     * Replaces the {@link Outline} element at the given {@code position}.
     * <p>Sets the bounding box dirty, hence a next call to {@link #getBounds()} will validate it.</p>
     *
     * @param position of the replaced Outline
     * @param outline replacement Outline object
     * @throws NullPointerException if the  {@link Outline} element is null
     * @throws IndexOutOfBoundsException if position is out of range (position < 0 || position >= getOutlineNumber())
     */
    public final void setOutline(final int position, final Outline outline) throws NullPointerException, IndexOutOfBoundsException {
        if (null == outline) {
            throw new NullPointerException("outline is null");
        }
        outlines.set(position, outline);
        dirtyBits |= DIRTY_BOUNDS | DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
    }

    /**
     * Removes the {@link Outline} element at the given {@code position}.
     * <p>Sets the bounding box dirty, hence a next call to {@link #getBounds()} will validate it.</p>
     *
     * @param position of the to be removed Outline
     * @throws IndexOutOfBoundsException if position is out of range (position < 0 || position >= getOutlineNumber())
     */
    public final Outline removeOutline(final int position) throws IndexOutOfBoundsException {
        dirtyBits |= DIRTY_BOUNDS | DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
        return outlines.remove(position);
    }

    /**
     * Get the last added outline to the list
     * of outlines that define the shape
     * @return the last outline
     */
    public final Outline getLastOutline() {
        return outlines.get(outlines.size()-1);
    }

    /**
     * Returns the {@code Outline} at {@code position}
     * @throws IndexOutOfBoundsException if position is out of range (position < 0 || position >= getOutlineNumber())
     */
    public final Outline getOutline(final int position) throws IndexOutOfBoundsException {
        return outlines.get(position);
    }

    /**
     * Adds a vertex to the last open outline to the shape's tail.
     *
     * @param v the vertex to be added to the OutlineShape
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final Vertex v) {
        final Outline lo = getLastOutline();
        lo.addVertex(v);
        if( 0 == ( dirtyBits & DIRTY_BOUNDS ) ) {
            bbox.resize(v.getCoord());
        }
        // vertices.add(v); // FIXME: can do and remove DIRTY_VERTICES ?
        dirtyBits |= DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
    }

    /**
     * Adds a vertex to the last open outline to the shape at {@code position}
     *
     * @param position index within the last open outline, at which the vertex will be added
     * @param v the vertex to be added to the OutlineShape
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final int position, final Vertex v) {
        final Outline lo = getLastOutline();
        lo.addVertex(position, v);
        if( 0 == ( dirtyBits & DIRTY_BOUNDS ) ) {
            bbox.resize(v.getCoord());
        }
        dirtyBits |= DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
    }

    /**
     * Add a 2D {@link Vertex} to the last open outline to the shape's tail.
     * The 2D vertex will be represented as Z=0.
     *
     * @param x the x coordinate
     * @param y the y coordniate
     * @param onCurve flag if this vertex is on the final curve or defines a curved region of the shape around this vertex.
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final float x, final float y, final boolean onCurve) {
        addVertex(new Vertex(x, y, 0f, onCurve));
    }

    /**
     * Add a 2D {@link Vertex} to the last open outline to the shape at {@code position}.
     * The 2D vertex will be represented as Z=0.
     *
     * @param position index within the last open outline, at which the vertex will be added
     * @param x the x coordinate
     * @param y the y coordniate
     * @param onCurve flag if this vertex is on the final curve or defines a curved region of the shape around this vertex.
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final int position, final float x, final float y, final boolean onCurve) {
        addVertex(position, new Vertex(x, y, 0f, onCurve));
    }

    /**
     * Add a 3D {@link Vertex} to the last open outline to the shape's tail.
     *
     * @param x the x coordinate
     * @param y the y coordinate
     * @param z the z coordinate
     * @param onCurve flag if this vertex is on the final curve or defines a curved region of the shape around this vertex.
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final float x, final float y, final float z, final boolean onCurve) {
        addVertex(new Vertex(x, y, z, onCurve));
    }

    /**
     * Add a 3D {@link Vertex} to the last open outline to the shape at {@code position}.
     *
     * @param position index within the last open outline, at which the vertex will be added
     * @param x the x coordinate
     * @param y the y coordniate
     * @param z the z coordinate
     * @param onCurve flag if this vertex is on the final curve or defines a curved region of the shape around this vertex.
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final int position, final float x, final float y, final float z, final boolean onCurve) {
        addVertex(position, new Vertex(x, y, z, onCurve));
    }

    /**
     * Add a vertex to the last open outline to the shape's tail.
     *
     * The vertex is passed as a float array and its offset where its attributes are located.
     * The attributes should be continuous (stride = 0).
     * Attributes which value are not set (when length less than 3)
     * are set implicitly to zero.
     * @param coordsBuffer the coordinate array where the vertex attributes are to be picked from
     * @param offset the offset in the buffer to the x coordinate
     * @param length the number of attributes to pick from the buffer (maximum 3)
     * @param onCurve flag if this vertex is on the final curve or defines a curved region of the shape around this vertex.
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final float[] coordsBuffer, final int offset, final int length, final boolean onCurve) {
        addVertex(new Vertex(coordsBuffer, offset, length, onCurve));
    }

    /**
     * Add a vertex to the last open outline to the shape at {@code position}.
     *
     * The vertex is passed as a float array and its offset where its attributes are located.
     * The attributes should be continuous (stride = 0).
     * Attributes which value are not set (when length less than 3)
     * are set implicitly to zero.
     * @param position index within the last open outline, at which the vertex will be added
     * @param coordsBuffer the coordinate array where the vertex attributes are to be picked from
     * @param offset the offset in the buffer to the x coordinate
     * @param length the number of attributes to pick from the buffer (maximum 3)
     * @param onCurve flag if this vertex is on the final curve or defines a curved region of the shape around this vertex.
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void addVertex(final int position, final float[] coordsBuffer, final int offset, final int length, final boolean onCurve) {
        addVertex(position, new Vertex(coordsBuffer, offset, length, onCurve));
    }

    /**
     * Closes the last outline in the shape.
     * <p>
     * Checks whether the last vertex equals to the first of the last outline.
     * If not equal, it either appends a copy of the first vertex
     * or prepends a copy of the last vertex, depending on <code>closeTail</code>.
     * </p>
     * @param closeTail if true, a copy of the first vertex will be appended,
     *                  otherwise a copy of the last vertex will be prepended.
     */
    public final void closeLastOutline(final boolean closeTail) {
        if( getLastOutline().setClosed( closeTail ) ) {
            dirtyBits |= DIRTY_TRIANGLES | DIRTY_VERTICES | DIRTY_CONVEX;
        }
    }

    /**
     * Append the given path geometry to this outline shape.
     *
     * The given path geometry should be {@link Winding#CCW}.
     *
     * If the given path geometry is {@link Winding#CW}, use {@link #addPathRev(Path2F, boolean)}.
     *
     * @param path the {@link Path2F} to append to this outline shape, should be {@link Winding#CCW}.
     * @param connect pass true to turn an initial moveTo segment into a lineTo segment to connect the new geometry to the existing path, otherwise pass false.
     * @see Path2F#getWinding()
     */
    public void addPath(final Path2F path, final boolean connect) {
        addPath(path.iterator(null), connect);
    }

    /**
     * Add the given {@link Path2F.Iterator} to this outline shape.
     *
     * The given path geometry should be {@link Winding#CCW}.
     *
     * If the given path geometry is {@link Winding#CW}, use {@link #addPathRev(Path2F.Iterator, boolean).
     *
     * @param pathI the {@link Path2F.Iterator} to append to this outline shape, should be {@link Winding#CCW}.
     * @param connect pass true to turn an initial moveTo segment into a lineTo segment to connect the new geometry to the existing path, otherwise pass false.
     * @see Path2F.Iterator#getWinding()
     */
    public final void addPath(final Path2F.Iterator pathI, boolean connect) {
        final float[] points = pathI.points();
        while ( pathI.hasNext() ) {
            final int idx = pathI.index();
            final Path2F.SegmentType type = pathI.next();
            switch(type) {
                case MOVETO:
                    final Outline lo = this.getLastOutline();
                    final int lo_sz = lo.getVertexCount();
                    if ( 0 == lo_sz ) {
                        addVertex(points, idx,   2, true);
                        break;
                    } else if ( !connect ) {
                        closeLastOutline(false);
                        addEmptyOutline();
                        addVertex(points, idx,   2, true);
                        break;
                    }
                    {
                        // Skip if last vertex in last outline matching this point -> already connected.
                        final Vert2fImmutable llc = lo.getVertex(lo_sz-1);
                        if( llc.x() == points[idx+0] &&
                            llc.y() == points[idx+1] ) {
                            break;
                        }
                    }
                    // fallthrough: MOVETO -> LINETO
                case LINETO:
                    addVertex(points, idx,   2, true);
                    break;
                case QUADTO:
                    addVertex(points, idx,   2, false);
                    addVertex(points, idx+2, 2, true);
                    break;
                case CUBICTO:
                    addVertex(points, idx,   2, false);
                    addVertex(points, idx+2, 2, false);
                    addVertex(points, idx+4, 2, true);
                    break;
                case CLOSE:
                    closeLastOutline(true);
                    addEmptyOutline();
                    break;
                default:
                    throw new IllegalArgumentException("Unhandled Segment Type: "+type);
            }
            connect = false;
        }
    }

    /**
     * Append the given path geometry to this outline shape in reverse order.
     *
     * The given path geometry should be {@link Winding#CW}.
     *
     * If the given path geometry is {@link Winding#CCW}, use {@link #addPath(Path2F, boolean)}.
     *
     * @param path the {@link Path2F} to append to this outline shape, should be {@link Winding#CW}.
     * @param connect pass true to turn an initial moveTo segment into a lineTo segment to connect the new geometry to the existing path, otherwise pass false.
     */
    public void addPathRev(final Path2F path, final boolean connect) {
        addPathRev(path.iterator(null), connect);
    }

    /**
     * Add the given {@link Path2F.Iterator} to this outline shape in reverse order.
     *
     * The given path geometry should be {@link Winding#CW}.
     *
     * If the given path geometry is {@link Winding#CCW}, use {@link #addPath(Path2F.Iterator, boolean).
     *
     * @param pathI the {@link Path2F.Iterator} to append to this outline shape, should be {@link Winding#CW}.
     * @param connect pass true to turn an initial moveTo segment into a lineTo segment to connect the new geometry to the existing path, otherwise pass false.
     */
    public final void addPathRev(final Path2F.Iterator pathI, boolean connect) {
        final float[] points = pathI.points();
        while ( pathI.hasNext() ) {
            final int idx = pathI.index();
            final Path2F.SegmentType type = pathI.next();
            switch(type) {
                case MOVETO:
                    final Outline lo = this.getLastOutline();
                    final int lo_sz = lo.getVertexCount();
                    if ( 0 == lo_sz ) {
                        addVertex(0, points, idx,   2, true);
                        break;
                    } else if ( !connect ) {
                        closeLastOutline(false);
                        addEmptyOutline();
                        addVertex(0, points, idx,   2, true);
                        break;
                    }
                    {
                        // Skip if last vertex in last outline matching this point -> already connected.
                        final Vert2fImmutable llc = lo.getVertex(0);
                        if( llc.x() == points[idx+0] &&
                            llc.y() == points[idx+1] ) {
                            break;
                        }
                    }
                    // fallthrough: MOVETO -> LINETO
                case LINETO:
                    addVertex(0, points, idx,   2, true);
                    break;
                case QUADTO:
                    addVertex(0, points, idx,   2, false);
                    addVertex(0, points, idx+2, 2, true);
                    break;
                case CUBICTO:
                    addVertex(0, points, idx,   2, false);
                    addVertex(0, points, idx+2, 2, false);
                    addVertex(0, points, idx+4, 2, true);
                    break;
                case CLOSE:
                    closeLastOutline(true);
                    addEmptyOutline();
                    break;
                default:
                    throw new IllegalArgumentException("Unhandled Segment Type: "+type);
            }
            connect = false;
        }
    }

    /**
     * Start a new position for the next line segment at given point x/y (P1).
     *
     * @param x point (P1)
     * @param y point (P1)
     * @param z point (P1)
     * @see Path2F#moveTo(float, float)
     * @see #addPath(com.jogamp.math.geom.plane.Path2F.Iterator, boolean)
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void moveTo(final float x, final float y, final float z) {
        if ( 0 == getLastOutline().getVertexCount() ) {
            addVertex(x, y, z, true);
        } else {
            closeLastOutline(false);
            addEmptyOutline();
            addVertex(x, y, z, true);
        }
    }

    /**
     * Add a line segment, intersecting the last point and the given point x/y (P1).
     *
     * @param x final point (P1)
     * @param y final point (P1)
     * @param z final point (P1)
     * @see Path2F#lineTo(float, float)
     * @see #addPath(com.jogamp.math.geom.plane.Path2F.Iterator, boolean)
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void lineTo(final float x, final float y, final float z) {
        addVertex(x, y, z, true);
    }

    /**
     * Add a quadratic curve segment, intersecting the last point and the second given point x2/y2 (P2).
     *
     * @param x1 quadratic parametric control point (P1)
     * @param y1 quadratic parametric control point (P1)
     * @param z1 quadratic parametric control point (P1)
     * @param x2 final interpolated control point (P2)
     * @param y2 final interpolated control point (P2)
     * @param z2 quadratic parametric control point (P2)
     * @see Path2F#quadTo(float, float, float, float)
     * @see #addPath(com.jogamp.math.geom.plane.Path2F.Iterator, boolean)
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void quadTo(final float x1, final float y1, final float z1, final float x2, final float y2, final float z2) {
        addVertex(x1, y1, z1, false);
        addVertex(x2, y2, z2, true);
    }

    /**
     * Add a cubic Bézier curve segment, intersecting the last point and the second given point x3/y3 (P3).
     *
     * @param x1 Bézier control point (P1)
     * @param y1 Bézier control point (P1)
     * @param z1 Bézier control point (P1)
     * @param x2 Bézier control point (P2)
     * @param y2 Bézier control point (P2)
     * @param z2 Bézier control point (P2)
     * @param x3 final interpolated control point (P3)
     * @param y3 final interpolated control point (P3)
     * @param z3 final interpolated control point (P3)
     * @see Path2F#cubicTo(float, float, float, float, float, float)
     * @see #addPath(com.jogamp.math.geom.plane.Path2F.Iterator, boolean)
     * @see <a href="#windingrules">see winding rules</a>
     */
    public final void cubicTo(final float x1, final float y1, final float z1, final float x2, final float y2, final float z2, final float x3, final float y3, final float z3) {
        addVertex(x1, y1, z1, false);
        addVertex(x2, y2, z2, false);
        addVertex(x3, y3, z3, true);
    }

    /**
     * Closes the current sub-path segment by drawing a straight line back to the coordinates of the last moveTo. If the path is already closed then this method has no effect.
     * @see Path2F#closePath()
     * @see #addPath(com.jogamp.math.geom.plane.Path2F.Iterator, boolean)
     */
    public final void closePath() {
        if ( 0 < getLastOutline().getVertexCount() ) {
            closeLastOutline(true);
            addEmptyOutline();
        }
    }

    /**
     * Return the outline's vertices state, {@link OutlineShape.VerticesState}
     */
    public final VerticesState getOutlineState() {
        return outlineState;
    }

    /**
     * Claim this outline's vertices are all {@link OutlineShape.VerticesState#QUADRATIC_NURBS},
     * hence no cubic transformations will be performed.
     */
    public final void setIsQuadraticNurbs() {
        outlineState = VerticesState.QUADRATIC_NURBS;
        // checkPossibleOverlaps = false;
    }

    private void subdivideTriangle(final Outline outline, final Vertex a, final Vertex b, final Vertex c, final int index){
        VectorUtil.midpoint(tmpV1, a.getCoord(), b.getCoord());
        VectorUtil.midpoint(tmpV3, b.getCoord(), c.getCoord());
        VectorUtil.midpoint(tmpV2, tmpV1, tmpV3);

        // COLOR
        // tmpC1.set(a.getColor()).add(b.getColor()).scale(0.5f);
        // tmpC3.set(b.getColor()).add(b.getColor()).scale(0.5f);
        // tmpC2.set(tmpC1).add(tmpC1).scale(0.5f);

        //drop off-curve vertex to image on the curve
        b.setCoord(tmpV2);
        b.setOnCurve(true);

        outline.addVertex(index, new Vertex(tmpV1, false));
        outline.addVertex(index+2, new Vertex(tmpV3, false));

        addedVerticeCount += 2;
    }

    /**
     * Check overlaps between curved triangles
     * first check if any vertex in triangle a is in triangle b
     * second check if edges of triangle a intersect segments of triangle b
     * if any of the two tests is true we divide current triangle
     * and add the other to the list of overlaps
     *
     * Loop until overlap array is empty. (check only in first pass)
     */
    private void checkOverlaps() {
        final ArrayList<Vertex> overlaps = new ArrayList<Vertex>(3);
        final int count = getOutlineCount();
        boolean firstpass = true;
        do {
            for (int cc = 0; cc < count; cc++) {
                final Outline outline = getOutline(cc);
                int vertexCount = outline.getVertexCount();
                for(int i=0; i < outline.getVertexCount(); i++) {
                    final Vertex currentVertex = outline.getVertex(i);
                    if ( !currentVertex.isOnCurve()) {
                        final Vertex nextV = outline.getVertex((i+1)%vertexCount);
                        final Vertex prevV = outline.getVertex((i+vertexCount-1)%vertexCount);
                        final Vertex overlap;

                        // check for overlap even if already set for subdivision
                        // ensuring both triangular overlaps get divided
                        // for pref. only check in first pass
                        // second pass to clear the overlaps array(reduces precision errors)
                        if( firstpass ) {
                            overlap = checkTriOverlaps0(prevV, currentVertex, nextV);
                        } else {
                            overlap = null;
                        }
                        if( null != overlap || overlaps.contains(currentVertex) ) {
                            overlaps.remove(currentVertex);

                            subdivideTriangle(outline, prevV, currentVertex, nextV, i);
                            i+=3;
                            vertexCount+=2;
                            addedVerticeCount+=2;

                            if(overlap != null && !overlap.isOnCurve()) {
                                if(!overlaps.contains(overlap)) {
                                    overlaps.add(overlap);
                                }
                            }
                        }
                    }
                }
            }
            firstpass = false;
        } while( !overlaps.isEmpty() );
    }

    private Vertex checkTriOverlaps0(final Vertex a, final Vertex b, final Vertex c) {
        final int count = getOutlineCount();
        for (int cc = 0; cc < count; cc++) {
            final Outline outline = getOutline(cc);
            final int vertexCount = outline.getVertexCount();
            for(int i=0; i < vertexCount; i++) {
                final Vertex current = outline.getVertex(i);
                if(current.isOnCurve() || current == a || current == b || current == c) {
                    continue;
                }
                final Vertex nextV = outline.getVertex((i+1)%vertexCount);
                final Vertex prevV = outline.getVertex((i+vertexCount-1)%vertexCount);

                //skip neighboring triangles
                if(prevV == c || nextV == a) {
                    continue;
                }

                if( VectorUtil.isInTriangle3(a.getCoord(), b.getCoord(), c.getCoord(),
                                                 current.getCoord(), nextV.getCoord(), prevV.getCoord(),
                                                 tmpV1, tmpV2, tmpV3) ) {
                    return current;
                }
                if(VectorUtil.testTri2SegIntersection(a, b, c, prevV, current, FloatUtil.EPSILON, false) ||
                   VectorUtil.testTri2SegIntersection(a, b, c, current, nextV, FloatUtil.EPSILON, false) ||
                   VectorUtil.testTri2SegIntersection(a, b, c, prevV, nextV, FloatUtil.EPSILON, false) ) {
                    return current;
                }
            }
        }
        return null;
    }

    private void cleanupOutlines() {
        final boolean transformOutlines2Quadratic = VerticesState.QUADRATIC_NURBS != outlineState;
        int count = getOutlineCount();
        for (int cc = 0; cc < count; cc++) {
            final Outline outline = getOutline(cc);
            int vertexCount = outline.getVertexCount();

            if( transformOutlines2Quadratic ) {
                for(int i=0; i < vertexCount; i++) {
                    final Vertex currentVertex = outline.getVertex(i);
                    final int j = (i+1)%vertexCount;
                    final Vertex nextVertex = outline.getVertex(j);
                    if ( !currentVertex.isOnCurve() && !nextVertex.isOnCurve() ) {
                        VectorUtil.midpoint(tmpV1, currentVertex.getCoord(), nextVertex.getCoord());
                        System.err.println("XXX: Cubic: "+i+": "+currentVertex+", "+j+": "+nextVertex);
                        final Vertex v = new Vertex(tmpV1, true);
                        // COLOR: tmpC1.set(currentVertex.getColor()).add(nextVertex.getColor()).scale(0.5f)
                        i++;
                        vertexCount++;
                        addedVerticeCount++;
                        outline.addVertex(i, v);
                    }
                }
            }
            if( 0 >= vertexCount ) {
                outlines.remove(outline);
                cc--;
                count--;
            } else if( 0 < vertexCount &&
                       outline.getVertex(0).getCoord().isEqual( outline.getLastVertex().getCoord() ) ) {
                outline.removeVertex(vertexCount-1);
            }
        }
        outlineState = VerticesState.QUADRATIC_NURBS;
        checkOverlaps();
    }

    private int generateVertexIds() {
        int maxVertexId = 0;
        for(int i=0; i<outlines.size(); i++) {
            final ArrayList<Vertex> vertices = outlines.get(i).getVertices();
            for(int pos=0; pos<vertices.size(); pos++) {
                vertices.get(pos).setId(maxVertexId++);
            }
        }
        return maxVertexId;
    }

    /**
     * Return list of concatenated vertices associated with all
     * {@code Outline}s of this object.
     * <p>
     * Vertices are cached until marked dirty.
     * </p>
     * <p>
     * Should always be called <i>after</i> {@link #getTriangles(VerticesState)},
     * since the latter will mark all cached vertices dirty!
     * </p>
     */
    public final ArrayList<Vertex> getVertices() {
        // final boolean updated;
        if( 0 != ( DIRTY_VERTICES & dirtyBits ) ) {
            vertices.clear();
            for(int i=0; i<outlines.size(); i++) {
                vertices.addAll(outlines.get(i).getVertices());
            }
            dirtyBits &= ~DIRTY_VERTICES;
            // updated = true;
        // } else {
        //    updated = false;
        }
        // if(Region.DEBUG_INSTANCE) {
        //    System.err.println("OutlineShape.getVertices(): o "+outlines.size()+", v "+vertices.size()+", updated "+updated);
        // }
        return vertices;
    }

    public static void printPerf(final PrintStream out) {
        // jogamp.graph.curve.tess.Loop.printPerf(out);
    }
    private void triangulateImpl() {
        if( 0 < outlines.size() ) {
            sortOutlines();
            generateVertexIds();

            triangles.clear();
            final Triangulator triangulator2d = Triangulation.create();
            triangulator2d.setComplexShape( isComplex() );
            for(int index = 0; index<outlines.size(); index++) {
                triangulator2d.addCurve(triangles, outlines.get(index), sharpness);
            }
            triangulator2d.generate(triangles);
            addedVerticeCount += triangulator2d.getAddedVerticeCount();
            triangulator2d.reset();
        }
    }

    /**
     * Triangulate the {@link OutlineShape} generating a list of triangles,
     * while {@link #transformOutlines(VerticesState)} beforehand.
     * <p>
     * Triangles are cached until marked dirty.
     * </p>
     * @return an arraylist of triangles representing the filled region
     * which is produced by the combination of the outlines
     */
    public final ArrayList<Triangle> getTriangles(final VerticesState destinationType) {
        final boolean updated;
        if(destinationType != VerticesState.QUADRATIC_NURBS) {
            throw new IllegalStateException("destinationType "+destinationType.name()+" not supported (currently "+outlineState.name()+")");
        }
        if( 0 != ( DIRTY_TRIANGLES & dirtyBits ) ) {
            cleanupOutlines();
            triangulateImpl();
            updated = true;
            dirtyBits |= DIRTY_VERTICES;
            dirtyBits &= ~DIRTY_TRIANGLES;
        } else {
            updated = false;
        }
        if(Region.DEBUG_INSTANCE) {
            System.err.println("OutlineShape.getTriangles().X: "+triangles.size()+", updated "+updated);
            if( updated ) {
                int i=0;
                for(final Triangle t : triangles) {
                    System.err.printf("- [%d]: %s%n", i++, t);
                }
            }
        }
        return triangles;
    }

    /**
     * Return a transformed instance with all {@link Outline}s are copied and transformed.
     * <p>
     * Note: Triangulated data is lost in returned instance!
     * </p>
     */
    public final OutlineShape transform(final AffineTransform t) {
        final OutlineShape newOutlineShape = new OutlineShape();
        final int osize = outlines.size();
        for(int i=0; i<osize; i++) {
            newOutlineShape.addOutline( outlines.get(i).transform(t) );
        }
        return newOutlineShape;
    }

    /**
     * Sort the outlines from large
     * to small depending on the AABox
     */
    private void sortOutlines() {
        Collections.sort(outlines, reversSizeComparator);
    }

    private static Comparator<Outline> reversSizeComparator = new Comparator<Outline>() {
        @Override
        public int compare(final Outline o1, final Outline o2) {
            return o2.compareTo(o1); // reverse !
        } };

    /**
     * Compare two outline shape's Bounding Box size.
     * @see AABBox#getSize()
     * @see java.lang.Comparable#compareTo(java.lang.Object)
     */
    @Override
    public final int compareTo(final OutlineShape other) {
        final float thisSize = getBounds().getSize();
        final float otherSize = other.getBounds().getSize();
        if( FloatUtil.isEqual2(thisSize, otherSize) ) {
            return 0;
        } else if( thisSize < otherSize ){
            return -1;
        } else {
            return 1;
        }
    }

    private void validateBoundingBox() {
        dirtyBits &= ~DIRTY_BOUNDS;
        bbox.reset();
        for (int i=0; i<outlines.size(); i++) {
            bbox.resize(outlines.get(i).getBounds());
        }
    }

    public final AABBox getBounds() {
        if( 0 == ( dirtyBits & DIRTY_BOUNDS ) ) {
            validateBoundingBox();
        }
        return bbox;
    }

    /**
     * @param obj the Object to compare this OutlineShape with
     * @return true if {@code obj} is an OutlineShape, not null,
     *                 same outlineState, equal bounds and equal outlines in the same order
     */
    @Override
    public final boolean equals(final Object obj) {
        if( obj == this) {
            return true;
        }
        if( null == obj || !(obj instanceof OutlineShape) ) {
            return false;
        }
        final OutlineShape o = (OutlineShape) obj;
        if(getOutlineState() != o.getOutlineState()) {
            return false;
        }
        if(getOutlineCount() != o.getOutlineCount()) {
            return false;
        }
        if( !getBounds().equals( o.getBounds() ) ) {
            return false;
        }
        for (int i=getOutlineCount()-1; i>=0; i--) {
            if( ! getOutline(i).equals( o.getOutline(i) ) ) {
                return false;
            }
        }
        return true;
    }

    @Override
    public final int hashCode() {
        throw new InternalError("hashCode not designed");
    }

    @Override
    public String toString() {
        // Avoid calling this.hashCode() !
        return getClass().getName() + "@" + Integer.toHexString(super.hashCode());
    }

    public void print(final PrintStream out) {
        final int oc = getOutlineCount();
        for (int oi = 0; oi < oc; oi++) {
            final Outline outline = getOutline(oi);
            final int vc = outline.getVertexCount();
            out.printf("- OL[%d]: %s%n", vc, outline.getWinding());
            for(int vi=0; vi < vc; vi++) {
                final Vertex v = outline.getVertex(vi);
                out.printf("-- OS[%d][%d]: %s%n", oi, vi, v);
            }
        }
    }
}