1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/**
* Copyright 2010-2023 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package com.jogamp.math;
/**
* Basic Double math utility functions.
*/
public final class DoubleUtil {
//
// Scalar Ops
//
@SuppressWarnings("unused")
private static void calculateMachineEpsilonDouble() {
final long t0;
double machEps = 1.0;
int i=0;
do {
machEps /= 2.0;
i++;
} while (1.0 + (machEps / 2.0) != 1.0);
machEpsilon = machEps;
}
private static volatile boolean machEpsilonAvail = false;
private static double machEpsilon = 0f;
/**
* Return computed machine Epsilon value.
* <p>
* The machine Epsilon value is computed once.
* </p>
* @see #EPSILON
*/
public static double getMachineEpsilon() {
if( !machEpsilonAvail ) {
synchronized(DoubleUtil.class) {
if( !machEpsilonAvail ) {
machEpsilonAvail = true;
calculateMachineEpsilonDouble();
}
}
}
return machEpsilon;
}
public static final double E = 2.7182818284590452354;
/** The value PI, i.e. 180 degrees in radians. */
public static final double PI = 3.14159265358979323846;
/** The value 2PI, i.e. 360 degrees in radians. */
public static final double TWO_PI = 2.0 * PI;
/** The value PI/2, i.e. 90 degrees in radians. */
public static final double HALF_PI = PI / 2.0;
/** The value PI/4, i.e. 45 degrees in radians. */
public static final double QUARTER_PI = PI / 4.0;
/** The value PI^2. */
public final static double SQUARED_PI = PI * PI;
/** Converts arc-degree to radians */
public static double adegToRad(final double arc_degree) {
return arc_degree * PI / 180.0;
}
/** Converts radians to arc-degree */
public static double radToADeg(final double rad) {
return rad * 180.0 / PI;
}
/**
* Epsilon for floating point {@value}, as once computed via {@link #getMachineEpsilon()} on an AMD-64 CPU.
* <p>
* Definition of machine epsilon guarantees that:
* <pre>
* 1.0 + EPSILON != 1.0
* </pre>
* In other words: <i>machEps</i> is the maximum relative error of the chosen rounding procedure.
* </p>
* <p>
* A number can be considered zero if it is in the range (or in the set):
* <pre>
* <b>MaybeZeroSet</b> e ]-<i>machEps</i> .. <i>machEps</i>[ <i>(exclusive)</i>
* </pre>
* While comparing floating point values, <i>machEps</i> allows to clip the relative error:
* <pre>
* boolean isZero = afloat < EPSILON;
* boolean isNotZero = afloat >= EPSILON;
*
* boolean isEqual = abs(bfloat - afloat) < EPSILON;
* boolean isNotEqual = abs(bfloat - afloat) >= EPSILON;
* </pre>
* </p>
* @see #isEqual(float, float, float)
* @see #isZero(float, float)
*/
public static final double EPSILON = 2.220446049250313E-16;
/**
* Inversion Epsilon, used with equals method to determine if two inverted matrices are close enough to be considered equal.
* <p>
* Using {@value}, which is ~100 times {@link DoubleUtil#EPSILON}.
* </p>
*/
public static final double INV_DEVIANCE = 1.0E-8f; // EPSILON == 1.1920929E-7f; double ALLOWED_DEVIANCE: 1.0E-8f
/**
* Return true if both values are equal w/o regarding an epsilon.
* <p>
* Implementation considers following corner cases:
* <ul>
* <li>NaN == NaN</li>
* <li>+Inf == +Inf</li>
* <li>-Inf == -Inf</li>
* </ul>
* </p>
* @see #isEqual(float, float, float)
*/
public static boolean isEqualRaw(final double a, final double b) {
// Values are equal (Inf, Nan .. )
return Double.doubleToLongBits(a) == Double.doubleToLongBits(b);
}
/**
* Returns true if both values are equal, i.e. their absolute delta < {@code epsilon} if 0 != {@code epsilon},
* otherwise == {@code 0}.
* <p>
* {@code epsilon} is allowed to be {@code 0}.
* </p>
* <p>
* Implementation considers following corner cases:
* <ul>
* <li>NaN == NaN</li>
* <li>+Inf == +Inf</li>
* <li>-Inf == -Inf</li>
* </ul>
* </p>
* @see #EPSILON
*/
public static boolean isEqual(final double a, final double b, final double epsilon) {
if( 0 == epsilon && Math.abs(a - b) == 0 ||
0 != epsilon && Math.abs(a - b) < epsilon ) {
return true;
} else {
// Values are equal (Inf, Nan .. )
return Double.doubleToLongBits(a) == Double.doubleToLongBits(b);
}
}
/**
* Returns true if both values are equal, i.e. their absolute delta < {@link #EPSILON}.
* <p>
* Implementation considers following corner cases:
* <ul>
* <li>NaN == NaN</li>
* <li>+Inf == +Inf</li>
* <li>-Inf == -Inf</li>
* </ul>
* </p>
* @see #EPSILON
*/
public static boolean isEqual(final double a, final double b) {
if ( Math.abs(a - b) < EPSILON ) {
return true;
} else {
// Values are equal (Inf, Nan .. )
return Double.doubleToLongBits(a) == Double.doubleToLongBits(b);
}
}
/**
* Returns true if both values are equal, i.e. their absolute delta < {@link #EPSILON}.
* <p>
* Implementation does not consider corner cases like {@link #isEqual(float, float, float)}.
* </p>
* @see #EPSILON
*/
public static boolean isEqual2(final double a, final double b) {
return Math.abs(a - b) < EPSILON;
}
/**
* Returns true if both values are equal w/o regarding an epsilon.
* <p>
* Implementation considers following corner cases:
* <ul>
* <li>NaN == NaN</li>
* <li>+Inf == +Inf</li>
* <li>-Inf == -Inf</li>
* <li>NaN > 0</li>
* <li>+Inf > -Inf</li>
* </ul>
* </p>
* @see #compare(float, float, float)
*/
public static int compare(final double a, final double b) {
if (a < b) {
return -1; // Neither is NaN, a is smaller
}
if (a > b) {
return 1; // Neither is NaN, a is larger
}
final long aBits = Double.doubleToLongBits(a);
final long bBits = Double.doubleToLongBits(b);
if( aBits == bBits ) {
return 0; // Values are equal (Inf, Nan .. )
} else if( aBits < bBits ) {
return -1; // (-0.0, 0.0) or (!NaN, NaN)
} else {
return 1; // ( 0.0, -0.0) or ( NaN, !NaN)
}
}
/**
* Returns {@code -1}, {@code 0} or {@code 1} if {@code a} is less, equal or greater than {@code b},
* taking {@code epsilon} into account for equality.
* <p>
* {@code epsilon} is allowed to be {@code 0}.
* </p>
* <p>
* Implementation considers following corner cases:
* <ul>
* <li>NaN == NaN</li>
* <li>+Inf == +Inf</li>
* <li>-Inf == -Inf</li>
* <li>NaN > 0</li>
* <li>+Inf > -Inf</li>
* </ul>
* </p>
* @see #EPSILON
*/
public static int compare(final double a, final double b, final double epsilon) {
if( 0 == epsilon && Math.abs(a - b) == 0 ||
0 != epsilon && Math.abs(a - b) < epsilon ) {
return 0;
} else {
return compare(a, b);
}
}
/**
* Returns true if value is zero, i.e. it's absolute value < {@code epsilon} if 0 != {@code epsilon},
* otherwise {@code 0 == a}.
* <p>
* {@code epsilon} is allowed to be {@code 0}.
* </p>
* <pre>
* return 0 == epsilon && 0 == a || 0 != epsilon && Math.abs(a) < epsilon
* </pre>
* @param a value to test
* @param epsilon optional positive epsilon value, maybe {@code 0}
* @see #EPSILON
*/
public static boolean isZero(final double a, final double epsilon) {
return 0 == epsilon && a == 0 ||
0 != epsilon && Math.abs(a) < epsilon;
}
/**
* Returns true if value is zero, i.e. it's absolute value < {@link #EPSILON}.
* @see #EPSILON
*/
public static boolean isZero(final double a) {
return Math.abs(a) < EPSILON;
}
}
|