aboutsummaryrefslogtreecommitdiffstats
path: root/src/jogl/classes/com/jogamp/math/VectorUtil.java
blob: 6af93ae6bdeedd40d5f2af75003b098ef0ca9550 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
/**
 * Copyright 2010-2024 JogAmp Community. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *    1. Redistributions of source code must retain the above copyright notice, this list of
 *       conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the above copyright notice, this list
 *       of conditions and the following disclaimer in the documentation and/or other materials
 *       provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are those of the
 * authors and should not be interpreted as representing official policies, either expressed
 * or implied, of JogAmp Community.
 */
package com.jogamp.math;

import java.util.List;

import com.jogamp.graph.geom.Vertex;
import com.jogamp.math.geom.plane.Winding;

public final class VectorUtil {
    /**
     * Return true if 2D vector components are zero, no {@link FloatUtil#EPSILON} is taken into consideration.
     */
    public static boolean isVec2Zero(final Vec3f vec) {
        return 0f == vec.x() && 0f == vec.y();
    }

    /**
     * Return true if all three vector components are zero, i.e. it's their absolute value < <code>epsilon</code>.
     * <p>
     * Implementation uses {@link FloatUtil#isZero(float, float)}, see API doc for details.
     * </p>
     */
    public static boolean isZero(final float x, final float y, final float z, final float epsilon) {
        return FloatUtil.isZero(x, epsilon) &&
               FloatUtil.isZero(y, epsilon) &&
               FloatUtil.isZero(z, epsilon) ;
    }

    /**
     * Return true if all three vector components are zero, i.e. it's their absolute value < {@link FloatUtil#EPSILON}.
     * <p>
     * Implementation uses {@link FloatUtil#isZero(float)}, see API doc for details.
     * </p>
     */
    public static boolean isZero(final float x, final float y, final float z) {
        return FloatUtil.isZero(x) &&
               FloatUtil.isZero(y) &&
               FloatUtil.isZero(z) ;
    }

    /**
     * Return the squared distance between the given two points described vector v1 and v2.
     * <p>
     * When comparing the relative distance between two points it is usually sufficient to compare the squared
     * distances, thus avoiding an expensive square root operation.
     * </p>
     */
    public static float distSquareVec3(final float[] v1, final float[] v2) {
        final float dx = v1[0] - v2[0];
        final float dy = v1[1] - v2[1];
        final float dz = v1[2] - v2[2];
        return dx * dx + dy * dy + dz * dz;
    }

    /**
     * Return the distance between the given two points described vector v1 and v2.
     */
    public static float distVec3(final float[] v1, final float[] v2) {
        return FloatUtil.sqrt(distSquareVec3(v1, v2));
    }

    /**
     * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i>
     */
    public static float normSquareVec2(final float[] vec) {
        return vec[0]*vec[0] + vec[1]*vec[1];
    }

    /**
     * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i>
     */
    public static float normSquareVec3(final float[] vec) {
        return vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
    }

    /**
     * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i>
     */
    public static float normSquareVec3(final float[] vec, final int offset) {
        float v = vec[0+offset];
        float r = v*v;
        v = vec[1+offset];
        r += v*v;
        v = vec[2+offset];
        return r + v*v;
    }

    /**
     * Return the length of a vector, a.k.a the <i>norm</i> or <i>magnitude</i>
     */
    public static float normVec2(final float[] vec) {
        return FloatUtil.sqrt(normSquareVec2(vec));
    }

    /**
     * Normalize a vector in place
     * @param vector input vector
     * @return normalized output vector
     */
    public static float[] normalizeVec3(final float[] vector) {
        final float lengthSq = normSquareVec3(vector);
        if ( FloatUtil.isZero(lengthSq) ) {
            vector[0] = 0f;
            vector[1] = 0f;
            vector[2] = 0f;
        } else {
            final float invSqr = 1f / FloatUtil.sqrt(lengthSq);
            vector[0] *= invSqr;
            vector[1] *= invSqr;
            vector[2] *= invSqr;
        }
        return vector;
    }

    /**
     * Normalize a vector in place
     * @param vector input vector
     * @return normalized output vector
     */
    public static float[] normalizeVec3(final float[] vector, final int offset) {
        final float lengthSq = normSquareVec3(vector, offset);
        if ( FloatUtil.isZero(lengthSq) ) {
            vector[0+offset] = 0f;
            vector[1+offset] = 0f;
            vector[2+offset] = 0f;
        } else {
            final float invSqr = 1f / FloatUtil.sqrt(lengthSq);
            vector[0+offset] *= invSqr;
            vector[1+offset] *= invSqr;
            vector[2+offset] *= invSqr;
        }
        return vector;
    }

    /**
     * Scales a vector by param using given result float[], result = vector * scale
     * @param result vector for the result, may be vector (in-place)
     * @param vector input vector
     * @param scale single scale constant for all vector components
     * @return result vector for chaining
     */
    public static float[] scaleVec2(final float[] result, final float[] vector, final float scale) {
        result[0] = vector[0] * scale;
        result[1] = vector[1] * scale;
        return result;
    }

    /**
     * Scales a vector by param using given result float[], result = vector * scale
     * @param result vector for the result, may be vector (in-place)
     * @param vector input vector
     * @param scale 2 component scale constant for each vector component
     * @return result vector for chaining
     */
    public static float[] scaleVec2(final float[] result, final float[] vector, final float[] scale)
    {
        result[0] = vector[0] * scale[0];
        result[1] = vector[1] * scale[1];
        return result;
    }

    /**
     * Divides a vector by param using given result float[], result = vector / scale
     * @param result vector for the result, may be vector (in-place)
     * @param vector input vector
     * @param scale single scale constant for all vector components
     * @return result vector for chaining
     */
    public static float[] divVec2(final float[] result, final float[] vector, final float scale) {
        result[0] = vector[0] / scale;
        result[1] = vector[1] / scale;
        return result;
    }

    /**
     * Divides a vector by param using given result float[], result = vector / scale
     * @param result vector for the result, may be vector (in-place)
     * @param vector input vector
     * @param scale 2 component scale constant for each vector component
     * @return result vector for chaining
     */
    public static float[] divVec2(final float[] result, final float[] vector, final float[] scale)
    {
        result[0] = vector[0] / scale[0];
        result[1] = vector[1] / scale[1];
        return result;
    }

    /**
     * Adds two vectors, result = v1 + v2
     * @param result float[2] result vector, may be either v1 or v2 (in-place)
     * @param v1 vector 1
     * @param v2 vector 2
     * @return result vector for chaining
     */
    public static float[] addVec2(final float[] result, final float[] v1, final float[] v2) {
        result[0] = v1[0] + v2[0];
        result[1] = v1[1] + v2[1];
        return result;
    }

    /**
     * Subtracts two vectors, result = v1 - v2
     * @param result float[2] result vector, may be either v1 or v2 (in-place)
     * @param v1 vector 1
     * @param v2 vector 2
     * @return result vector for chaining
     */
    public static float[] subVec2(final float[] result, final float[] v1, final float[] v2) {
        result[0] = v1[0] - v2[0];
        result[1] = v1[1] - v2[1];
        return result;
    }

    /**
     * cross product vec1 x vec2
     * @param v1 vector 1
     * @param v2 vector 2
     * @return the resulting vector
     */
    public static float[] crossVec3(final float[] r, final int r_offset, final float[] v1, final int v1_offset, final float[] v2, final int v2_offset)
    {
        r[0+r_offset] = v1[1+v1_offset] * v2[2+v2_offset] - v1[2+v1_offset] * v2[1+v2_offset];
        r[1+r_offset] = v1[2+v1_offset] * v2[0+v2_offset] - v1[0+v1_offset] * v2[2+v2_offset];
        r[2+r_offset] = v1[0+v1_offset] * v2[1+v2_offset] - v1[1+v1_offset] * v2[0+v2_offset];
        return r;
    }

    /**
     * Calculate the midpoint of two points
     * @param p1 first point vector
     * @param p2 second point vector
     * @return midpoint
     */
    public static Vec3f midpoint(final Vec3f result, final Vec3f p1, final Vec3f p2) {
        result.set( (p1.x() + p2.x())*0.5f,
                    (p1.y() + p2.y())*0.5f,
                    (p1.z() + p2.z())*0.5f );
        return result;
    }

    /**
     * Return the determinant of 3 vectors
     * @param a vector 1
     * @param b vector 2
     * @param c vector 3
     * @return the determinant value
     */
    public static float determinant(final Vec3f a, final Vec3f b, final Vec3f c) {
        return a.x()*b.y()*c.z() + a.y()*b.z()*c.x() + a.z()*b.x()*c.y() - a.x()*b.z()*c.y() - a.y()*b.x()*c.z() - a.z()*b.y()*c.x();
    }

    /**
     * Check if three vertices are collinear
     * @param v1 vertex 1
     * @param v2 vertex 2
     * @param v3 vertex 3
     * @return true if collinear, false otherwise
     */
    public static boolean isCollinear(final Vec3f v1, final Vec3f v2, final Vec3f v3) {
        return FloatUtil.isZero( determinant(v1, v2, v3) );
    }

    /**
     * Check if vertices in triangle circumcircle given {@code d} vertex, from paper by Guibas and Stolfi (1985).
     * <p>
     * Implementation uses double precision.
     * </p>
     * @param a triangle vertex 1
     * @param b triangle vertex 2
     * @param c triangle vertex 3
     * @param d vertex in question
     * @return true if the vertex d is inside the circle defined by the vertices a, b, c.
     */
    public static boolean isInCircle(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d) {
        return inCircleVal(a, b, c, d) > DoubleUtil.EPSILON;
    }
    public static double inCircleVal(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d) {
        // Operation costs:
        // - 4x (triAreaVec2: 5+, 2*) -> 20+, 8*
        // - plus 7+, 12*             -> 27+, 20*
        return sqlend(a.x(), a.y()) * triArea(b, c, d) -
               sqlend(b.x(), b.y()) * triArea(a, c, d) +
               sqlend(c.x(), c.y()) * triArea(a, b, d) -
               sqlend(d.x(), d.y()) * triArea(a, b, c);
    }
    private static double sqlend(final double x, final double y) {
        return x*x + y*y;
    }

    /**
     * Computes oriented double area of a triangle,
     * i.e. the 2x2 determinant with b-a and c-a per column.
     * <pre>
     *       | bx-ax, cx-ax |
     * det = | by-ay, cy-ay |
     * </pre>
     * @param a first vertex
     * @param b second vertex
     * @param c third vertex
     * @return area > 0 CCW, ..
     */
    public static double triArea(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c){
        return triArea(a.x(), a.y(), b.x(), b.y(), c.x(), c.y());
    }
    private static double triArea(final double ax, final double ay, final double bx, final double by, final double cx, final double cy){
        return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax);
    }

    /**
     * Check if a vertex is in triangle using barycentric coordinates computation.
     * @param a first triangle vertex
     * @param b second triangle vertex
     * @param c third triangle vertex
     * @param p the vertex in question
     * @param ac temporary storage
     * @param ab temporary storage
     * @param ap temporary storage
     * @return true if p is in triangle (a, b, c), false otherwise.
     */
    public static boolean isInTriangle(final Vec3f a, final Vec3f  b, final Vec3f c,
                                       final Vec3f p,
                                       final Vec3f ac, final Vec3f ab, final Vec3f ap){
        // Compute vectors
        ac.minus( c, a); // v0
        ab.minus( b, a); // v1
        ap.minus( p, a); // v2

        // Compute dot products
        final float dotAC_AC = ac.dot(ac);
        final float dotAC_AB = ac.dot(ab);
        final float dotAB_AB = ab.dot(ab);
        final float dotAC_AP = ac.dot(ap);
        final float dotAB_AP = ab.dot(ap);

        // Compute barycentric coordinates
        final float invDenom = 1 / (dotAC_AC * dotAB_AB - dotAC_AB * dotAC_AB);
        final float u = (dotAB_AB * dotAC_AP - dotAC_AB * dotAB_AP) * invDenom;
        final float v = (dotAC_AC * dotAB_AP - dotAC_AB * dotAC_AP) * invDenom;

        // Check if point is in triangle
        return (u >= 0) && (v >= 0) && (u + v < 1);
    }

    /**
     * Check if one of three vertices are in triangle using barycentric coordinates computation.
     * @param a first triangle vertex
     * @param b second triangle vertex
     * @param c third triangle vertex
     * @param p1 the vertex in question
     * @param p2 the vertex in question
     * @param p3 the vertex in question
     * @param ac temporary storage
     * @param ab temporary storage
     * @param ap temporary storage
     * @return true if p1 or p2 or p3 is in triangle (a, b, c), false otherwise.
     */
    public static boolean isInTriangle3(final Vec3f a, final Vec3f b, final Vec3f c,
                                        final Vec3f p1, final Vec3f p2, final Vec3f p3,
                                        final Vec3f ac, final Vec3f ab, final Vec3f ap){
        // Compute vectors
        ac.minus(c, a); // v0
        ab.minus(b, a); // v1

        // Compute dot products
        final float dotAC_AC = ac.dot(ac);
        final float dotAC_AB = ac.dot(ab);
        final float dotAB_AB = ab.dot(ab);

        // Compute barycentric coordinates
        final float invDenom = 1 / (dotAC_AC * dotAB_AB - dotAC_AB * dotAC_AB);
        {
            ap.minus(p1, a); // v2
            final float dotAC_AP1 = ac.dot(ap);
            final float dotAB_AP1 = ab.dot(ap);
            final float u = (dotAB_AB * dotAC_AP1 - dotAC_AB * dotAB_AP1) * invDenom;
            final float v = (dotAC_AC * dotAB_AP1 - dotAC_AB * dotAC_AP1) * invDenom;

            // Check if point is in triangle
            if ( (u >= 0) && (v >= 0) && (u + v < 1) ) {
                return true;
            }
        }

        {
            ap.minus(p2, a); // v2
            final float dotAC_AP2 = ac.dot(ap);
            final float dotAB_AP2 = ab.dot(ap);
            final float u = (dotAB_AB * dotAC_AP2 - dotAC_AB * dotAB_AP2) * invDenom;
            final float v = (dotAC_AC * dotAB_AP2 - dotAC_AB * dotAC_AP2) * invDenom;

            // Check if point is in triangle
            if ( (u >= 0) && (v >= 0) && (u + v < 1) ) {
                return true;
            }
        }

        {
            ap.minus(p3, a); // v3
            final float dotAC_AP3 = ac.dot(ap);
            final float dotAB_AP3 = ab.dot(ap);
            final float u = (dotAB_AB * dotAC_AP3 - dotAC_AB * dotAB_AP3) * invDenom;
            final float v = (dotAC_AC * dotAB_AP3 - dotAC_AB * dotAC_AP3) * invDenom;

            // Check if point is in triangle
            if ( (u >= 0) && (v >= 0) && (u + v < 1) ) {
                return true;
            }
        }
        return false;
    }
    /**
     * Check if one of three vertices are in triangle using
     * barycentric coordinates computation, using given epsilon for comparison.
     * @param a first triangle vertex
     * @param b second triangle vertex
     * @param c third triangle vertex
     * @param p1 the vertex in question
     * @param p2 the vertex in question
     * @param p3 the vertex in question
     * @param tmpAC
     * @param tmpAB
     * @param tmpAP
     * @return true if p1 or p2 or p3 is in triangle (a, b, c), false otherwise.
     */
    public static boolean isInTriangle3(final Vec3f a, final Vec3f b, final Vec3f c,
                                        final Vec3f p1, final Vec3f p2, final Vec3f p3,
                                        final Vec3f ac, final Vec3f ab, final Vec3f ap,
                                        final float epsilon) {
        // Compute vectors
        ac.minus(c, a); // v0
        ab.minus(b, a); // v1

        // Compute dot products
        final float dotAC_AC = ac.dot(ac);
        final float dotAC_AB = ac.dot(ab);
        final float dotAB_AB = ab.dot(ab);

        // Compute barycentric coordinates
        final float invDenom = 1 / (dotAC_AC * dotAB_AB - dotAC_AB * dotAC_AB);
        {
            ap.minus(p1, a); // v2
            final float dotAC_AP1 = ac.dot(ap);
            final float dotAB_AP1 = ab.dot(ap);
            final float u = (dotAB_AB * dotAC_AP1 - dotAC_AB * dotAB_AP1) * invDenom;
            final float v = (dotAC_AC * dotAB_AP1 - dotAC_AB * dotAC_AP1) * invDenom;

            // Check if point is in triangle
            if( FloatUtil.compare(u, 0.0f, epsilon) >= 0 &&
                FloatUtil.compare(v, 0.0f, epsilon) >= 0 &&
                FloatUtil.compare(u+v, 1.0f, epsilon) < 0 ) {
                return true;
            }
        }

        {
            ap.minus(p2, a); // v3
            final float dotAC_AP2 = ac.dot(ap);
            final float dotAB_AP2 = ab.dot(ap);
            final float u = (dotAB_AB * dotAC_AP2 - dotAC_AB * dotAB_AP2) * invDenom;
            final float v = (dotAC_AC * dotAB_AP2 - dotAC_AB * dotAC_AP2) * invDenom;

            // Check if point is in triangle
            if( FloatUtil.compare(u, 0.0f, epsilon) >= 0 &&
                FloatUtil.compare(v, 0.0f, epsilon) >= 0 &&
                FloatUtil.compare(u+v, 1.0f, epsilon) < 0 ) {
                return true;
            }
        }

        {
            ap.minus(p3, a); // v4
            final float dotAC_AP3 = ac.dot(ap);
            final float dotAB_AP3 = ab.dot(ap);
            final float u = (dotAB_AB * dotAC_AP3 - dotAC_AB * dotAB_AP3) * invDenom;
            final float v = (dotAC_AC * dotAB_AP3 - dotAC_AB * dotAC_AP3) * invDenom;

            // Check if point is in triangle
            if( FloatUtil.compare(u, 0.0f, epsilon) >= 0 &&
                FloatUtil.compare(v, 0.0f, epsilon) >= 0 &&
                FloatUtil.compare(u+v, 1.0f, epsilon) < 0 ) {
                return true;
            }
        }
        return false;
    }

    /**
     * Check if points are in ccw order
     * <p>
     * Consider using {@link #getWinding(List)} using the {@link #area(List)} function over all points
     * on complex shapes for a reliable result!
     * </p>
     * @param a first vertex
     * @param b second vertex
     * @param c third vertex
     * @return true if the points a,b,c are in a ccw order
     * @see #getWinding(List)
     */
    public static boolean isCCW(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c){
        return triArea(a,b,c) > DoubleUtil.EPSILON;
    }

    /**
     * Compute the winding of the 3 given points
     * <p>
     * Consider using {@link #getWinding(List)} using the {@link #area(List)} function over all points
     * on complex shapes for a reliable result!
     * </p>
     * @param a first vertex
     * @param b second vertex
     * @param c third vertex
     * @return {@link Winding#CCW} or {@link Winding#CW}
     * @see #getWinding(List)
     */
    public static Winding getWinding(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c) {
        return triArea(a,b,c) > DoubleUtil.EPSILON ? Winding.CCW : Winding.CW ;
    }

    /**
     * Computes the area of a list of vertices via shoelace formula.
     * <p>
     * This method is utilized e.g. to reliably compute the {@link Winding} of complex shapes.
     * </p>
     * <p>
     * Implementation uses double precision.
     * </p>
     * @param vertices
     * @return positive area if ccw else negative area value
     * @see #getWinding(List)
     */
    public static double area(final List<? extends Vert2fImmutable> vertices) {
        final int n = vertices.size();
        double area = 0.0;
        for (int p = n - 1, q = 0; q < n; p = q++) {
            final Vert2fImmutable pCoord = vertices.get(p);
            final Vert2fImmutable qCoord = vertices.get(q);
            area += (double)pCoord.x() * (double)qCoord.y() - (double)qCoord.x() * (double)pCoord.y();
        }
        return area;
    }

    /**
     * Compute the winding using the {@link #area(List)} function over all vertices for complex shapes.
     * <p>
     * Uses the {@link #area(List)} function over all points
     * on complex shapes for a reliable result!
     * </p>
     * <p>
     * Implementation uses double precision.
     * </p>
     * @param vertices array of Vertices
     * @return {@link Winding#CCW} or {@link Winding#CW}
     * @see #area(List)
     */
    public static Winding getWinding(final List<? extends Vert2fImmutable> vertices) {
        return area(vertices) >= 0 ? Winding.CCW : Winding.CW ;
    }

    /**
     * Finds the plane equation of a plane given its normal and a point on the plane.
     *
     * @param resultV4 vec4 plane equation
     * @param normalVec3
     * @param pVec3
     * @return result for chaining
     */
    public static Vec4f getPlaneVec3(final Vec4f resultV4, final Vec3f normalVec3, final Vec3f pVec3) {
        /**
            Ax + By + Cz + D == 0 ;
            D = - ( Ax + By + Cz )
              = - ( A*a[0] + B*a[1] + C*a[2] )
              = - vec3Dot ( normal, a ) ;
         */
        resultV4.set(normalVec3, -normalVec3.dot(pVec3));
        return resultV4;
    }

    /**
     * This finds the plane equation of a triangle given three vertices.
     *
     * @param resultVec4 vec4 plane equation
     * @param v1 vec3
     * @param v2 vec3
     * @param v3 vec3
     * @param temp1V3
     * @param temp2V3
     * @return result for chaining
     */
    public static Vec4f getPlaneVec3(final Vec4f resultVec4, final Vec3f v1, final Vec3f v2, final Vec3f v3,
                                     final Vec3f temp1V3, final Vec3f temp2V3, final Vec3f temp3V3) {
        /**
            Ax + By + Cz + D == 0 ;
            D = - ( Ax + By + Cz )
              = - ( A*a[0] + B*a[1] + C*a[2] )
              = - vec3Dot ( normal, a ) ;
         */
      temp3V3.cross(temp1V3.minus(v2, v1), temp2V3.minus(v3, v1)).normalize();
      resultVec4.set(temp3V3, -temp3V3.dot(v1));
      return resultVec4;
    }

    /**
     * Return intersection of an infinite line with a plane if exists, otherwise null.
     * <p>
     * Thanks to <i>Norman Vine -- nhv@yahoo.com  (with hacks by Steve)</i>
     * </p>
     *
     * @param result vec3 result buffer for intersecting coords
     * @param ray here representing an infinite line, origin and direction.
     * @param plane vec4 plane equation
     * @param epsilon
     * @return resulting intersecting if exists, otherwise null
     */
    public static Vec3f line2PlaneIntersection(final Vec3f result, final Ray ray, final Vec4f plane, final float epsilon) {
        final Vec3f plane3 = new Vec3f(plane);
        final float tmp = ray.dir.dot(plane3);

        if ( FloatUtil.isZero(tmp, epsilon) ) {
            return null; // ray is parallel to plane
        }
        result.set( ray.dir );
        return result.scale( -( ray.orig.dot(plane3) + plane.w() ) / tmp ).add(ray.orig);
    }

    /**
     * Compute intersection between two lines
     * @param a vertex 1 of first line
     * @param b vertex 2 of first line
     * @param c vertex 1 of second line
     * @param d vertex 2 of second line
     * @return the intersection coordinates if the lines intersect, otherwise
     * returns null
     * @deprecated analyze correctness
     */
    @Deprecated
    public static Vec3f line2lineIntersection0(final Vec3f result,
                                               final Vert2fImmutable a, final Vert2fImmutable b,
                                               final Vert2fImmutable c, final Vert2fImmutable d) {
        final float determinant = (a.x()-b.x())*(c.y()-d.y()) - (a.y()-b.y())*(c.x()-d.x());

        if (determinant == 0)
            return null;

        final float alpha = (a.x()*b.y()-a.y()*b.x());
        final float beta = (c.x()*d.y()-c.y()*d.y());
        final float xi = ((c.x()-d.x())*alpha-(a.x()-b.x())*beta)/determinant;
        final float yi = ((c.y()-d.y())*alpha-(a.y()-b.y())*beta)/determinant;

        return result.set(xi, yi, 0);
    }
    /** Compute intersection between two segments
     * @param a vertex 1 of first segment
     * @param b vertex 2 of first segment
     * @param c vertex 1 of second segment
     * @param d vertex 2 of second segment
     * @return the intersection coordinates if the segments intersect, otherwise returns null
     * @deprecated use {@link #seg2SegIntersection(Vec3f, Vec2f, Vec2f, Vec2f, Vec2f, boolean)
     */
    @Deprecated
    public static Vec3f seg2SegIntersection0(final Vec3f result, final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d) {
        final float determinant = (a.x()-b.x())*(c.y()-d.y()) - (a.y()-b.y())*(c.x()-d.x());

        if (determinant == 0)
            return null;

        final float alpha = (a.x()*b.y()-a.y()*b.x());
        final float beta = (c.x()*d.y()-c.y()*d.y());
        final float xi = ((c.x()-d.x())*alpha-(a.x()-b.x())*beta)/determinant;
        final float yi = ((c.y()-d.y())*alpha-(a.y()-b.y())*beta)/determinant;

        final float gamma = (xi - a.x())/(b.x() - a.x());
        final float gamma1 = (xi - c.x())/(d.x() - c.x());
        if(gamma <= 0 || gamma >= 1) return null;
        if(gamma1 <= 0 || gamma1 >= 1) return null;

        return result.set(xi, yi, 0);
    }
    /**
     * Compute intersection between two segments
     * @param a vertex 1 of first segment
     * @param b vertex 2 of first segment
     * @param c vertex 1 of second segment
     * @param d vertex 2 of second segment
     * @return true if the segments intersect, otherwise returns false
     * @deprecated use {@link #testSeg2SegIntersection(Vert2fImmutable, Vert2fImmutable, Vert2fImmutable, Vert2fImmutable, float, boolean)}
     */
    @Deprecated
    public static boolean testSeg2SegIntersection0(final Vert2fImmutable a, final Vert2fImmutable b,
                                                   final Vert2fImmutable c, final Vert2fImmutable d) {
        // Operations: 14+, 11*, 2 branches
        final float determinant = (a.x()-b.x())*(c.y()-d.y()) - (a.y()-b.y())*(c.x()-d.x());

        if (determinant == 0) {
            return false;
        }

        final float alpha = (a.x()*b.y()-a.y()*b.x());
        final float beta = (c.x()*d.y()-c.y()*d.y());
        final float xi = ((c.x()-d.x())*alpha-(a.x()-b.x())*beta)/determinant;

        final float gamma0 = (xi - a.x())/(b.x() - a.x());
        final float gamma1 = (xi - c.x())/(d.x() - c.x());
        if(gamma0 <= 0 || gamma0 >= 1 || gamma1 <= 0 || gamma1 >= 1) {
            return false;
        }

        return true;
    }
    /**
     * Check if a segment intersects with a triangle
     * @param a vertex 1 of the triangle
     * @param b vertex 2 of the triangle
     * @param c vertex 3 of the triangle
     * @param d vertex 1 of first segment
     * @param e vertex 2 of first segment
     * @return true if the segment intersects at least one segment of the triangle, false otherwise
     * @deprecated use {@link #testTri2SegIntersection(Vert2fImmutable, Vert2fImmutable, Vert2fImmutable, Vert2fImmutable, Vert2fImmutable, float, boolean)}
     */
    @Deprecated
    public static boolean testTri2SegIntersection0(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c,
                                                   final Vert2fImmutable d, final Vert2fImmutable e){
        return testSeg2SegIntersection0(a, b, d, e) ||
               testSeg2SegIntersection0(b, c, d, e) ||
               testSeg2SegIntersection0(a, c, d, e) ;
    }

    /**
     * Line segment intersection test and returning the intersecting point.
     * <p>
     * See [p + t r = q + u s](https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282)
     * and [its terse C# implementation](https://www.codeproject.com/tips/862988/find-the-intersection-point-of-two-line-segments)
     * </p>
     * <p>
     * Implementation uses float precision.
     * </p>
     * @param p vertex 1 of first segment
     * @param p2 vertex 2 of first segment
     * @param q vertex 1 of second segment
     * @param q2 vertex 2 of second segment
     * @param epsilon optional epsilon. If {@code 0} just compare against {@code 0}, otherwise compare against this {@code epsilon}. See {@link FloatUtil#EPSILON}
     * @param doCollinear consider collinear case, i.e. overlapping segments as an intersection returning {@code true}
     * @return true if line segments are intersecting, otherwise false
     */
    public static boolean seg2SegIntersection(final Vec3f result, final Vec2f p, final Vec2f p2, final Vec2f q, final Vec2f q2, final float epsilon, final boolean doCollinear)
    {
        final Vec2f r = p2.minus(p);
        final Vec2f s = q2.minus(q);
        final float rxs = r.cross(s);

        if ( FloatUtil.isZero(rxs, epsilon) ) {
            if( doCollinear ) {
                final Vec2f q_p = q.minus(p);
                final float qpxr = q_p.cross(r);
                if ( FloatUtil.isZero(qpxr, epsilon) ) // disabled collinear case
                {
                    // 1) r x s = 0 and (q - p) x r = 0, the two lines are collinear.
                    final Vec2f p_q = p.minus(q);
                    final float qp_dot_r = q_p.dot(r);
                    final float pq_dot_s = p_q.dot(s);
                    // if ( ( 0 <= qp_dot_r && qp_dot_r <= r.dot(r) ) ||
                    //      ( 0 <= pq_dot_s && pq_dot_s <= s.dot(s) ) )
                    if ( ( epsilon <= qp_dot_r && qp_dot_r - r.dot(r) <= epsilon ) ||
                         ( epsilon <= pq_dot_s && pq_dot_s - s.dot(s) <= epsilon ) )
                    {
                        // 1.1) 0 <= (q - p) · r <= r · r or 0 <= (p - q) · s <= s · s, the two lines are overlapping
                        // FIXME: result set to q2 endpoint, OK?
                        result.set(q2, 0);
                        return true;
                    }
                    // 1.2 the two lines are collinear but disjoint.
                    return false;
                } else {
                    // 2) r × s = 0 and (q − p) × r ≠ 0, the two lines are parallel and non-intersecting.
                    return false;
                }
            } else {
                // Not considering collinear case as an intersection
                return false;
            }
        } else {
            // r x s != 0
            final Vec2f q_p = q.minus(p);
            final float qpxr = q_p.cross(r);

            // p + t r = q + u s
            // (p + t r) × s = (q + u s) × s
            // t (r × s) = (q − p) × s, with s x s = 0
            // t = (q - p) x s / (r x s)
            final float t = q_p.cross(s) / rxs;

            // u = (p − q) × r / (s × r) = (q - p) x r / (r x s), with s × r = − r × s
            final float u = qpxr / rxs;

            // if ( (0 <= t && t <= 1) && (0 <= u && u <= 1) )
            if ( (epsilon <= t && t - 1 <= epsilon) && (epsilon <= u && u - 1 <= epsilon) )
            {
                // 3) r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the two line segments meet at the point p + t * r = q + u * s.
                result.set( p.plus( r.mul( t ) ), 0 ); // == q + (u * s)
                return true;
            }
        }

        return false;
    }
    /**
     * Line segment intersection test.
     * <p>
     * See [p + t r = q + u s](https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282)
     * and [its terse C# implementation](https://www.codeproject.com/tips/862988/find-the-intersection-point-of-two-line-segments)
     * </p>
     * <p>
     * Implementation uses float precision.
     * </p>
     * @param p vertex 1 of first segment
     * @param p2 vertex 2 of first segment
     * @param q vertex 1 of second segment
     * @param q2 vertex 2 of second segment
     * @param epsilon optional epsilon. If {@code 0} just compare against {@code 0}, otherwise compare against this {@code epsilon}. See {@link FloatUtil#EPSILON}
     * @param doCollinear consider collinear case, i.e. overlapping segments as an intersection returning {@code true}
     * @return true if line segments are intersecting, otherwise false
     */
    public static boolean testSeg2SegIntersection(final Vec2f p, final Vec2f p2, final Vec2f q, final Vec2f q2, final float epsilon, final boolean doCollinear)
    {
        final Vec2f r = p2.minus(p);
        final Vec2f s = q2.minus(q);
        final float rxs = r.cross(s);

        if ( FloatUtil.isZero(rxs, epsilon) ) {
            if( doCollinear ) {
                final Vec2f q_p = q.minus(p);
                final float qpxr = q_p.cross(r);
                if ( FloatUtil.isZero(qpxr, epsilon) ) // disabled collinear case
                {
                    // 1) r x s = 0 and (q - p) x r = 0, the two lines are collinear.
                    final Vec2f p_q = p.minus(q);
                    final float qp_dot_r = q_p.dot(r);
                    final float pq_dot_s = p_q.dot(s);
                    // if ( ( 0 <= qp_dot_r && qp_dot_r <= r.dot(r) ) ||
                    //      ( 0 <= pq_dot_s && pq_dot_s <= s.dot(s) ) )
                    if ( ( epsilon <= qp_dot_r && qp_dot_r - r.dot(r) <= epsilon ) ||
                         ( epsilon <= pq_dot_s && pq_dot_s - s.dot(s) <= epsilon ) )
                    {
                        // 1.1) 0 <= (q - p) · r <= r · r or 0 <= (p - q) · s <= s · s, the two lines are overlapping
                        return true;
                    }
                    // 1.2 the two lines are collinear but disjoint.
                    return false;
                } else {
                    // 2) r × s = 0 and (q − p) × r ≠ 0, the two lines are parallel and non-intersecting.
                    return false;
                }
            } else {
                // Not considering collinear case as an intersection
                return false;
            }
        } else {
            // r x s != 0
            final Vec2f q_p = q.minus(p);
            final float qpxr = q_p.cross(r);

            // p + t r = q + u s
            // (p + t r) × s = (q + u s) × s
            // t (r × s) = (q − p) × s, with s x s = 0
            // t = (q - p) x s / (r x s)
            final float t = q_p.cross(s) / rxs;

            // u = (p − q) × r / (s × r) = (q - p) x r / (r x s), with s × r = − r × s
            final float u = qpxr / rxs;

            // if ( (0 <= t && t <= 1) && (0 <= u && u <= 1) )
            if ( (epsilon <= t && t - 1 <= epsilon) && (epsilon <= u && u - 1 <= epsilon) )
            {
                // 3) r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the two line segments meet at the point p + t * r = q + u * s.
                return true;
            }
        }
        return false;
    }
    /**
     * Line segment intersection test without considering collinear-case.
     * <p>
     * See [p + t r = q + u s](https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282)
     * and [its terse C# implementation](https://www.codeproject.com/tips/862988/find-the-intersection-point-of-two-line-segments)
     * </p>
     * <p>
     * Implementation uses float precision.
     * </p>
     * @param p vertex 1 of first segment
     * @param p2 vertex 2 of first segment
     * @param q vertex 1 of second segment
     * @param q2 vertex 2 of second segment
     * @param epsilon optional epsilon. If {@code 0} just compare against {@code 0}, otherwise compare against this {@code epsilon}. See {@link FloatUtil#EPSILON}
     * @param doCollinear consider collinear case, i.e. overlapping segments as an intersection returning {@code true}
     * @return true if line segments are intersecting, otherwise false
     */
    public static boolean testSeg2SegIntersection(final Vert2fImmutable p, final Vert2fImmutable p2, final Vert2fImmutable q, final Vert2fImmutable q2,
                                                  final float epsilon, final boolean doCollinear)
    {
        // Operations: 11+, 8*, 2 branches
        final float rx = p2.x() - p.x(); // p2.minus(p)
        final float ry = p2.y() - p.y();
        final float sx = q2.x() - q.x(); // q2.minus(q)
        final float sy = q2.y() - q.y();
        final float rxs = rx * sy - ry * sx; // r.cross(s)

        if ( FloatUtil.isZero(rxs, epsilon) ) {
            if( doCollinear ) {
                final float q_px = q.x() - p.x(); // q.minus(p)
                final float q_py = q.y() - p.y();
                final float qpxr = q_px * ry - q_py * rx; // q_p.cross(r)
                if ( FloatUtil.isZero(qpxr, epsilon) ) // disabled collinear case
                {
                    // 1) r x s = 0 and (q - p) x r = 0, the two lines are collinear.
                    final float p_qx = p.x() - q.x(); // p.minus(q)
                    final float p_qy = p.y() - q.y();
                    final float qp_dot_r = q_px * rx + q_py * ry; // q_p.dot(r);
                    final float pq_dot_s = p_qx * sx + p_qy * sy; // p_q.dot(s);
                    final float r_dot_r = rx * rx + ry * ry; // r.dot(r);
                    final float s_dot_s = sx * sx + sy * sy; // r.dot(r);
                    // if ( ( 0 <= qp_dot_r && qp_dot_r <= r.dot(r) ) ||
                    //      ( 0 <= pq_dot_s && pq_dot_s <= s.dot(s) ) )
                    if ( ( epsilon <= qp_dot_r && qp_dot_r - r_dot_r <= epsilon ) ||
                         ( epsilon <= pq_dot_s && pq_dot_s - s_dot_s <= epsilon ) )
                    {
                        // 1.1) 0 <= (q - p) · r <= r · r or 0 <= (p - q) · s <= s · s, the two lines are overlapping
                        return true;
                    }
                    // 1.2 the two lines are collinear but disjoint.
                    return false;
                } else {
                    // 2) r × s = 0 and (q − p) × r ≠ 0, the two lines are parallel and non-intersecting.
                    return false;
                }
            } else {
                // Not considering collinear case as an intersection
                return false;
            }
        } else {
            // r x s != 0
            final float q_px = q.x() - p.x(); // q.minus(p)
            final float q_py = q.y() - p.y();
            final float qpxr = q_px * ry - q_py * rx; // q_p.cross(r)

            // p + t r = q + u s
            // (p + t r) × s = (q + u s) × s
            // t (r × s) = (q − p) × s, with s x s = 0
            // t = (q - p) x s / (r x s)
            final float t = ( q_px * sy - q_py * sx ) / rxs; // q_p.cross(s) / rxs

            // u = (p − q) × r / (s × r) = (q - p) x r / (r x s), with s × r = − r × s
            final float u = qpxr / rxs;

            // if ( (0 <= t && t <= 1) && (0 <= u && u <= 1) )
            if ( (epsilon <= t && t - 1 <= epsilon) && (epsilon <= u && u - 1 <= epsilon) )
            {
                // 3) r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the two line segments meet at the point p + t * r = q + u * s.
                return true;
            }
        }
        return false;
    }
    /**
     * Check if a segment intersects with a triangle.
     * <p>
     * Implementation uses float precision.
     * </p>
     * @param a vertex 1 of the triangle
     * @param b vertex 2 of the triangle
     * @param c vertex 3 of the triangle
     * @param d vertex 1 of first segment
     * @param e vertex 2 of first segment
     * @param epsilon optional epsilon. If {@code 0} just compare against {@code 0}, otherwise compare against this {@code epsilon}. See {@link FloatUtil#EPSILON}
     * @param doCollinear consider collinear case, i.e. overlapping segments as an intersection returning {@code true}
     * @return true if the segment intersects at least one segment of the triangle, false otherwise
     * @see #testSeg2SegIntersection(Vert2fImmutable, Vert2fImmutable, Vert2fImmutable, Vert2fImmutable, float, boolean)
     */
    public static boolean testTri2SegIntersection(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c,
                                                  final Vert2fImmutable d, final Vert2fImmutable e, final float epsilon, final boolean doCollinear) {
        return testSeg2SegIntersection(a, b, d, e, epsilon, doCollinear) ||
               testSeg2SegIntersection(b, c, d, e, epsilon, doCollinear) ||
               testSeg2SegIntersection(a, c, d, e, epsilon, doCollinear) ;
    }

    /**
     * Returns whether the given {@code polyline} denotes a convex shape
     * <p>
     * See [Determine whether a polygon is convex based on its vertices](https://math.stackexchange.com/questions/1743995/determine-whether-a-polygon-is-convex-based-on-its-vertices/1745427#1745427)
     * </p>
     * @param polyline connected {@link Vert2fImmutable}, i.e. a poly-line
     * @param shortIsConvex return value if {@code vertices} have less than three elements, allows simplification
     */
    public static boolean isConvex0(final List<? extends Vert2fImmutable> polyline, final boolean shortIsConvex) {
        final int polysz = polyline.size();
        if( polysz < 3 ) {
            return shortIsConvex;
        }
        final float eps = FloatUtil.EPSILON;

        float wSign = 0;    // First nonzero orientation (positive or negative)

        int xSign = 0;
        int xFirstSign = 0; //  Sign of first nonzero edge vector x
        int xFlips = 0;     //  Number of sign changes in x

        int ySign = 0;
        int yFirstSign = 0; //  Sign of first nonzero edge vector y
        int yFlips = 0;     //  Number of sign changes in y

        Vert2fImmutable curr = polyline.get(polysz-2); //  Second-to-last vertex
        Vert2fImmutable next = polyline.get(polysz-1); //  Last vertex

        for(int i=0; i<polysz; ++i) { //  Each vertex, in order
            final Vert2fImmutable prev = curr; //  Previous vertex
            curr = next;              //  Current vertex
            next = polyline.get(i);   //  Next vertex

            //  Previous edge vector ("before"):
            final float bx = curr.x() - prev.x();
            final float by = curr.y() - prev.y();

            //  Next edge vector ("after"):
            final float ax = next.x() - curr.x();
            final float ay = next.y() - curr.y();

            //  Calculate sign flips using the next edge vector ("after"),
            //  recording the first sign.
            if( ax > eps ) {
                if( xSign == 0 ) {
                    xFirstSign = +1;
                } else if( xSign < 0 ) {
                    xFlips = xFlips + 1;
                }
                xSign = +1;
            } else if( ax < -eps ) {
                if( xSign == 0 ) {
                    xFirstSign = -1;
                } else if ( xSign > 0 ) {
                    xFlips = xFlips + 1;
                }
                xSign = -1;
            }
            if( xFlips > 2 ) {
                return false;
            }

            if( ay > eps ) {
                if( ySign == 0 ) {
                    yFirstSign = +1;
                } else if( ySign < 0 ) {
                    yFlips = yFlips + 1;
                }
                ySign = +1;
            } else if( ay < -eps ) {
                if( ySign == 0 ) {
                    yFirstSign = -1;
                } else if( ySign > 0 ) {
                    yFlips = yFlips + 1;
                }
                ySign = -1;
            }
            if( yFlips > 2 ) {
                return false;
            }

            //  Find out the orientation of this pair of edges,
            //  and ensure it does not differ from previous ones.
            final float w = bx*ay - ax*by;
            if( DoubleUtil.isZero(wSign) && !DoubleUtil.isZero(w) ) {
                wSign = w;
            } else if( wSign > eps && w < -eps ) {
                return false;
            } else if( wSign < -eps && w > eps ) {
                return false;
            }
        }

        //  Final/wraparound sign flips:
        if( xSign != 0 && xFirstSign != 0 && xSign != xFirstSign ) {
            xFlips = xFlips + 1;
        }
        if( ySign != 0 && yFirstSign != 0 && ySign != yFirstSign ) {
            yFlips = yFlips + 1;
        }

        //  Concave polygons have two sign flips along each axis.
        if( xFlips != 2 || yFlips != 2 ) {
            return false;
        }

        //  This is a convex polygon.
        return true;
    }


    private static int cmod(final int i, final int count) {
        if( i >= 0 ) {
            return i % count;
        } else {
            return i + count;
        }
    }
    /**
     * Returns whether the given on-curve {@code polyline} points denotes a convex shape
     * <p>
     * See [Determine whether a polygon is convex based on its vertices](https://math.stackexchange.com/questions/1743995/determine-whether-a-polygon-is-convex-based-on-its-vertices/1745427#1745427)
     * </p>
     * <p>
     * All off-curve points are ignored.
     * </p>
     * @param polyline connected {@link Vert2fImmutable}, i.e. a poly-line
     * @param shortIsConvex return value if {@code vertices} have less than three elements, allows simplification
     */
    public static boolean isConvex1(final List<Vertex> polyline, final boolean shortIsConvex) {
        final int polysz = polyline.size();
        if( polysz < 3 ) {
            return shortIsConvex;
        }
        final float eps = FloatUtil.EPSILON;

        float wSign = 0;    // First nonzero orientation (positive or negative)

        int xSign = 0;
        int xFirstSign = 0; //  Sign of first nonzero edge vector x
        int xFlips = 0;     //  Number of sign changes in x

        int ySign = 0;
        int yFirstSign = 0; //  Sign of first nonzero edge vector y
        int yFlips = 0;     //  Number of sign changes in y

        int offset=-3;
        Vertex v0, v1;
        {
            do {
                ++offset; // -2
                v0 = polyline.get(cmod(offset, polysz));   // current, polyline[-2] if on-curve
            } while( !v0.isOnCurve() && offset < polysz );
            if( offset >= polysz ) {
                return shortIsConvex;
            }
            do {
                ++offset; // -1
                v1 = polyline.get(cmod(offset, polysz));   //  next, polyline[-1] if both on-curve
            } while( !v1.isOnCurve() && offset < polysz );
            if( offset >= polysz ) {
                return shortIsConvex;
            }
        }

        while( offset < polysz ) {
            final Vertex vp = v0;                         //  previous on-curve vertex
            v0 = v1;                                      //  current on-curve vertex
            do {
                ++offset; // 0, ...
                v1 = polyline.get(cmod(offset, polysz));  //  next on-curve vertex
            } while( !v1.isOnCurve() && offset < polysz );

            //  Previous edge vector ("before"):
            final float bx = v0.x() - vp.x();
            final float by = v0.y() - vp.y();

            //  Next edge vector ("after"):
            final float ax = v1.x() - v0.x();
            final float ay = v1.y() - v0.y();

            //  Calculate sign flips using the next edge vector ("after"),
            //  recording the first sign.
            if( ax > eps ) {
                if( xSign == 0 ) {
                    xFirstSign = +1;
                } else if( xSign < 0 ) {
                    xFlips = xFlips + 1;
                }
                xSign = +1;
            } else if( ax < -eps ) {
                if( xSign == 0 ) {
                    xFirstSign = -1;
                } else if ( xSign > 0 ) {
                    xFlips = xFlips + 1;
                }
                xSign = -1;
            }
            if( xFlips > 2 ) {
                return false;
            }

            if( ay > eps ) {
                if( ySign == 0 ) {
                    yFirstSign = +1;
                } else if( ySign < 0 ) {
                    yFlips = yFlips + 1;
                }
                ySign = +1;
            } else if( ay < -eps ) {
                if( ySign == 0 ) {
                    yFirstSign = -1;
                } else if( ySign > 0 ) {
                    yFlips = yFlips + 1;
                }
                ySign = -1;
            }
            if( yFlips > 2 ) {
                return false;
            }

            //  Find out the orientation of this pair of edges,
            //  and ensure it does not differ from previous ones.
            final float w = bx*ay - ax*by;
            if( DoubleUtil.isZero(wSign) && !DoubleUtil.isZero(w) ) {
                wSign = w;
            } else if( wSign > eps && w < -eps ) {
                return false;
            } else if( wSign < -eps && w > eps ) {
                return false;
            }
        }

        //  Final/wraparound sign flips:
        if( xSign != 0 && xFirstSign != 0 && xSign != xFirstSign ) {
            xFlips = xFlips + 1;
        }
        if( ySign != 0 && yFirstSign != 0 && ySign != yFirstSign ) {
            yFlips = yFlips + 1;
        }

        //  Concave polygons have two sign flips along each axis.
        if( xFlips != 2 || yFlips != 2 ) {
            return false;
        }

        //  This is a convex polygon.
        return true;
    }
}