1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
/**
* Copyright 2010 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package com.jogamp.opengl.math;
import java.util.ArrayList;
public class VectorUtil {
public enum Winding {
CW(-1), CCW(1);
public final int dir;
Winding(int dir) {
this.dir = dir;
}
}
public static final int COLLINEAR = 0;
/** compute the dot product of two points
* @param vec1 vector 1
* @param vec2 vector 2
* @return the dot product as float
*/
public static float dot(float[] vec1, float[] vec2)
{
return (vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2]);
}
/** Normalize a vector
* @param vector input vector
* @return normalized vector
*/
public static float[] normalize(float[] vector)
{
final float[] newVector = new float[3];
final float d = FloatUtil.sqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2]);
if(d> 0.0f)
{
newVector[0] = vector[0]/d;
newVector[1] = vector[1]/d;
newVector[2] = vector[2]/d;
}
return newVector;
}
/** Scales a vector by param creating a new float[] for the result!
* @param vector input vector
* @param scale constant to scale by
* @return new scaled vector
* @deprecated Use {@link #scale(float[], float[], float)}
*/
public static float[] scale(float[] vector, float scale)
{
final float[] newVector = new float[3];
newVector[0] = vector[0] * scale;
newVector[1] = vector[1] * scale;
newVector[2] = vector[2] * scale;
return newVector;
}
/** Scales a vector by param using given result float[]
* @param result vector for the result
* @param vector input vector
* @param scale single scale constant for all vector components
*/
public static float[] scale(float[] result, float[] vector, float scale)
{
result[0] = vector[0] * scale;
result[1] = vector[1] * scale;
result[2] = vector[2] * scale;
return result;
}
/** Scales a vector by param using given result float[]
* @param result vector for the result
* @param vector input vector
* @param scale 3 component scale constant for each vector component
* @return given result vector
*/
public static float[] scale(float[] result, float[] vector, float[] scale)
{
result[0] = vector[0] * scale[0];
result[1] = vector[1] * scale[1];
result[2] = vector[2] * scale[2];
return result;
}
/** Adds to vectors
* @param v1 vector 1
* @param v2 vector 2
* @return v1 + v2
*/
public static float[] vectorAdd(float[] v1, float[] v2)
{
final float[] newVector = new float[3];
newVector[0] = v1[0] + v2[0];
newVector[1] = v1[1] + v2[1];
newVector[2] = v1[2] + v2[2];
return newVector;
}
/** cross product vec1 x vec2
* @param vec1 vector 1
* @param vec2 vecttor 2
* @return the resulting vector
*/
public static float[] cross(float[] vec1, float[] vec2)
{
final float[] out = new float[3];
out[0] = vec2[2]*vec1[1] - vec2[1]*vec1[2];
out[1] = vec2[0]*vec1[2] - vec2[2]*vec1[0];
out[2] = vec2[1]*vec1[0] - vec2[0]*vec1[1];
return out;
}
/** Column Matrix Vector multiplication
* @param colMatrix column matrix (4x4)
* @param vec vector(x,y,z)
* @return result new float[3]
*/
public static float[] colMatrixVectorMult(float[] colMatrix, float[] vec)
{
final float[] out = new float[3];
out[0] = vec[0]*colMatrix[0] + vec[1]*colMatrix[4] + vec[2]*colMatrix[8] + colMatrix[12];
out[1] = vec[0]*colMatrix[1] + vec[1]*colMatrix[5] + vec[2]*colMatrix[9] + colMatrix[13];
out[2] = vec[0]*colMatrix[2] + vec[1]*colMatrix[6] + vec[2]*colMatrix[10] + colMatrix[14];
return out;
}
/** Matrix Vector multiplication
* @param rawMatrix column matrix (4x4)
* @param vec vector(x,y,z)
* @return result new float[3]
*/
public static float[] rowMatrixVectorMult(float[] rawMatrix, float[] vec)
{
final float[] out = new float[3];
out[0] = vec[0]*rawMatrix[0] + vec[1]*rawMatrix[1] + vec[2]*rawMatrix[2] + rawMatrix[3];
out[1] = vec[0]*rawMatrix[4] + vec[1]*rawMatrix[5] + vec[2]*rawMatrix[6] + rawMatrix[7];
out[2] = vec[0]*rawMatrix[8] + vec[1]*rawMatrix[9] + vec[2]*rawMatrix[10] + rawMatrix[11];
return out;
}
/** Calculate the midpoint of two values
* @param p1 first value
* @param p2 second vale
* @return midpoint
*/
public static float mid(float p1, float p2)
{
return (p1+p2)/2.0f;
}
/** Calculate the midpoint of two points
* @param p1 first point
* @param p2 second point
* @return midpoint
*/
public static float[] mid(float[] p1, float[] p2)
{
final float[] midPoint = new float[3];
midPoint[0] = (p1[0] + p2[0])*0.5f;
midPoint[1] = (p1[1] + p2[1])*0.5f;
midPoint[2] = (p1[2] + p2[2])*0.5f;
return midPoint;
}
/** Compute the norm of a vector
* @param vec vector
* @return vorm
*/
public static float norm(float[] vec)
{
return FloatUtil.sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
}
/** Compute distance between 2 points
* @param p0 a ref point on the line
* @param vec vector representing the direction of the line
* @param point the point to compute the relative distance of
* @return distance float
*/
public static float computeLength(float[] p0, float[] point)
{
final float w0 = point[0]-p0[0];
final float w1 = point[1]-p0[1];
final float w2 = point[2]-p0[2];
return FloatUtil.sqrt(w0*w0 + w1*w1 + w2*w2);
}
/**Check equality of 2 vec3 vectors
* @param v1 vertex 1
* @param v2 vertex 2
* @return
*/
public static boolean checkEquality(float[] v1, float[] v2)
{
return Float.compare(v1[0], v2[0]) == 0 &&
Float.compare(v1[1], v2[1]) == 0 &&
Float.compare(v1[2], v2[2]) == 0 ;
}
/**Check equality of 2 vec2 vectors
* @param v1 vertex 1
* @param v2 vertex 2
* @return
*/
public static boolean checkEqualityVec2(float[] v1, float[] v2)
{
return Float.compare(v1[0], v2[0]) == 0 &&
Float.compare(v1[1], v2[1]) == 0 ;
}
/** Compute the determinant of 3 vectors
* @param a vector 1
* @param b vector 2
* @param c vector 3
* @return the determinant value
*/
public static float computeDeterminant(float[] a, float[] b, float[] c)
{
return a[0]*b[1]*c[2] + a[1]*b[2]*c[0] + a[2]*b[0]*c[1] - a[0]*b[2]*c[1] - a[1]*b[0]*c[2] - a[2]*b[1]*c[0];
}
/** Check if three vertices are colliniear
* @param v1 vertex 1
* @param v2 vertex 2
* @param v3 vertex 3
* @return true if collinear, false otherwise
*/
public static boolean checkCollinear(float[] v1, float[] v2, float[] v3)
{
return (computeDeterminant(v1, v2, v3) == VectorUtil.COLLINEAR);
}
/** Compute Vector
* @param v1 vertex 1
* @param v2 vertex2 2
* @return Vector V1V2
*/
public static float[] computeVector(float[] v1, float[] v2)
{
final float[] vector = new float[3];
vector[0] = v2[0] - v1[0];
vector[1] = v2[1] - v1[1];
vector[2] = v2[2] - v1[2];
return vector;
}
/** Check if vertices in triangle circumcircle
* @param a triangle vertex 1
* @param b triangle vertex 2
* @param c triangle vertex 3
* @param d vertex in question
* @return true if the vertex d is inside the circle defined by the
* vertices a, b, c. from paper by Guibas and Stolfi (1985).
*/
public static boolean inCircle(Vert2fImmutable a, Vert2fImmutable b, Vert2fImmutable c, Vert2fImmutable d){
return (a.getX() * a.getX() + a.getY() * a.getY()) * triArea(b, c, d) -
(b.getX() * b.getX() + b.getY() * b.getY()) * triArea(a, c, d) +
(c.getX() * c.getX() + c.getY() * c.getY()) * triArea(a, b, d) -
(d.getX() * d.getX() + d.getY() * d.getY()) * triArea(a, b, c) > 0;
}
/** Computes oriented area of a triangle
* @param a first vertex
* @param b second vertex
* @param c third vertex
* @return compute twice the area of the oriented triangle (a,b,c), the area
* is positive if the triangle is oriented counterclockwise.
*/
public static float triArea(Vert2fImmutable a, Vert2fImmutable b, Vert2fImmutable c) {
return (b.getX() - a.getX()) * (c.getY() - a.getY()) - (b.getY() - a.getY())*(c.getX() - a.getX());
}
/** Check if a vertex is in triangle using
* barycentric coordinates computation.
* @param a first triangle vertex
* @param b second triangle vertex
* @param c third triangle vertex
* @param p the vertex in question
* @return true if p is in triangle (a, b, c), false otherwise.
*/
public static boolean vertexInTriangle(float[] a, float[] b, float[] c, float[] p){
// Compute vectors
final float[] ac = computeVector(a, c); //v0
final float[] ab = computeVector(a, b); //v1
final float[] ap = computeVector(a, p); //v2
// Compute dot products
final float dot00 = dot(ac, ac);
final float dot01 = dot(ac, ab);
final float dot02 = dot(ac, ap);
final float dot11 = dot(ab, ab);
final float dot12 = dot(ab, ap);
// Compute barycentric coordinates
final float invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
final float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
final float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// Check if point is in triangle
return (u >= 0) && (v >= 0) && (u + v < 1);
}
/** Check if points are in ccw order
* @param a first vertex
* @param b second vertex
* @param c third vertex
* @return true if the points a,b,c are in a ccw order
*/
public static boolean ccw(Vert2fImmutable a, Vert2fImmutable b, Vert2fImmutable c){
return triArea(a,b,c) > 0;
}
/** Compute the winding of given points
* @param a first vertex
* @param b second vertex
* @param c third vertex
* @return Winding
*/
public static Winding getWinding(Vert2fImmutable a, Vert2fImmutable b, Vert2fImmutable c) {
return triArea(a,b,c) > 0 ? Winding.CCW : Winding.CW ;
}
/** Computes the area of a list of vertices to check if ccw
* @param vertices
* @return positive area if ccw else negative area value
*/
public static float area(ArrayList<? extends Vert2fImmutable> vertices) {
final int n = vertices.size();
float area = 0.0f;
for (int p = n - 1, q = 0; q < n; p = q++)
{
final float[] pCoord = vertices.get(p).getCoord();
final float[] qCoord = vertices.get(q).getCoord();
area += pCoord[0] * qCoord[1] - qCoord[0] * pCoord[1];
}
return area;
}
/** Compute the general winding of the vertices
* @param vertices array of Vertices
* @return CCW or CW {@link Winding}
*/
public static Winding getWinding(ArrayList<? extends Vert2fImmutable> vertices) {
return area(vertices) >= 0 ? Winding.CCW : Winding.CW ;
}
/** Compute intersection between two segments
* @param a vertex 1 of first segment
* @param b vertex 2 of first segment
* @param c vertex 1 of second segment
* @param d vertex 2 of second segment
* @return the intersection coordinates if the segments intersect, otherwise
* returns null
*/
public static float[] seg2SegIntersection(Vert2fImmutable a, Vert2fImmutable b, Vert2fImmutable c, Vert2fImmutable d) {
final float determinant = (a.getX()-b.getX())*(c.getY()-d.getY()) - (a.getY()-b.getY())*(c.getX()-d.getX());
if (determinant == 0)
return null;
final float alpha = (a.getX()*b.getY()-a.getY()*b.getX());
final float beta = (c.getX()*d.getY()-c.getY()*d.getY());
final float xi = ((c.getX()-d.getX())*alpha-(a.getX()-b.getX())*beta)/determinant;
final float yi = ((c.getY()-d.getY())*alpha-(a.getY()-b.getY())*beta)/determinant;
final float gamma = (xi - a.getX())/(b.getX() - a.getX());
final float gamma1 = (xi - c.getX())/(d.getX() - c.getX());
if(gamma <= 0 || gamma >= 1) return null;
if(gamma1 <= 0 || gamma1 >= 1) return null;
return new float[]{xi,yi,0};
}
/** Compute intersection between two lines
* @param a vertex 1 of first line
* @param b vertex 2 of first line
* @param c vertex 1 of second line
* @param d vertex 2 of second line
* @return the intersection coordinates if the lines intersect, otherwise
* returns null
*/
public static float[] line2lineIntersection(Vert2fImmutable a, Vert2fImmutable b, Vert2fImmutable c, Vert2fImmutable d) {
final float determinant = (a.getX()-b.getX())*(c.getY()-d.getY()) - (a.getY()-b.getY())*(c.getX()-d.getX());
if (determinant == 0)
return null;
final float alpha = (a.getX()*b.getY()-a.getY()*b.getX());
final float beta = (c.getX()*d.getY()-c.getY()*d.getY());
final float xi = ((c.getX()-d.getX())*alpha-(a.getX()-b.getX())*beta)/determinant;
final float yi = ((c.getY()-d.getY())*alpha-(a.getY()-b.getY())*beta)/determinant;
return new float[]{xi,yi,0};
}
/** Check if a segment intersects with a triangle
* @param a vertex 1 of the triangle
* @param b vertex 2 of the triangle
* @param c vertex 3 of the triangle
* @param d vertex 1 of first segment
* @param e vertex 2 of first segment
* @return true if the segment intersects at least one segment of the triangle, false otherwise
*/
public static boolean tri2SegIntersection(Vert2fImmutable a, Vert2fImmutable b, Vert2fImmutable c, Vert2fImmutable d, Vert2fImmutable e){
if(seg2SegIntersection(a, b, d, e) != null)
return true;
if(seg2SegIntersection(b, c, d, e) != null)
return true;
if(seg2SegIntersection(a, c, d, e) != null)
return true;
return false;
}
}
|