1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/*
* Copyright 2022 Phil Burk
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.jsyn.unitgen;
import com.jsyn.dsp.AllPassDelay;
import com.jsyn.dsp.SimpleDelay;
import com.jsyn.ports.UnitInputPort;
import com.jsyn.ports.UnitOutputPort;
import com.jsyn.util.PseudoRandom;
/**
* Simple reverberation effect based on a "figure eight"
* network of all-pass filters and delays.
*
* This reverb does not have a pre-delay or early reflections.
* It can be used as the "tail" of a more complex reverb that
* adds those functions.
*
* The algorithm is based on
* "Effect Design Part 1: Reverberator and Other Filters"
* by Jon Dattorro, CCRMA, Stanford University 1996
*
* @see InterpolatingDelay
*/
public class PlateReverb extends UnitGenerator {
/**
* Mono input.
*/
public UnitInputPort input;
/**
* Approximate time in seconds to decay by -60 dB.
*/
public UnitInputPort time;
/**
* Damping factor for the feedback filters.
* Must be between 0.0 and 1.0. Default is 0.5.
*/
public UnitInputPort damping;
/**
* Stereo output.
*/
public UnitOutputPort output;
private static final double MAX_DECAY = 0.98;
// These default values are based on table-1 of the paper by Jon Dattorro.
private static final float DECAY_DIFFUSION_1 = 0.70f;
private static final float DECAY_DIFFUSION_2 = 0.50f;
private static final float INPUT_DIFFUSION_1 = 0.75f;
private static final float INPUT_DIFFUSION_2 = 0.625f;
private static final float DAMPING = 0.5f; // Must match default comment above for damping port.
private static final float BANDWIDTH = 0.99995f;
private static class FastSineOscillator {
private float mPhaseIncrement = 0.0001f;
private float mPhaseDelta = mPhaseIncrement;
private float mPhase; // ranges from -PI/2 to PI/2
private static final float PHASE_LIMIT = (float) Math.PI * 0.5f;
void setFrequency(float frequency, float sampleRate) {
mPhaseIncrement = (float) (frequency * Math.PI / sampleRate);
}
float generate() {
// Generate a triangle wave
mPhase += mPhaseDelta;
if (mPhase > PHASE_LIMIT) {
mPhase = PHASE_LIMIT - (mPhase - PHASE_LIMIT);
mPhaseDelta = -mPhaseIncrement; // reverse direction
} else if (mPhase < -PHASE_LIMIT) {
mPhase = -PHASE_LIMIT + (-PHASE_LIMIT - mPhase);
mPhaseDelta = mPhaseIncrement; // reverse direction
}
// Factorial constants so code is easier to read.
final float IF3 = 1.0f / (2 * 3);
final float IF5 = IF3 / (4 * 5);
final float IF7 = IF5 / (6 * 7);
final float IF9 = IF7 / (8 * 9);
final float IF11 = IF9 / (10 * 11);
float x = mPhase;
float x2 = (x * x);
/* Taylor expansion factored into multiply-adds */
// TODO use fewer factors cuz just modulation
return x
* (x2 * (x2 * (x2 * (x2 * ((x2 * (-IF11)) + IF9) - IF7) + IF5) - IF3) + 1);
}
}
private static class RandomModulator {
private PseudoRandom randomNum = new PseudoRandom();;
protected float prevNoise, currNoise;
private float mPhase;
private float mPhaseIncrement;
void setFrequency(float frequency, float sampleRate) {
mPhaseIncrement = frequency / sampleRate;
}
// Generate ramps between random points between -1.0 and +1.0.
public float generate() {
mPhase += mPhaseIncrement;
// calculate new random value whenever phase passes 1.0
if (mPhase > 1.0) {
prevNoise = currNoise;
currNoise = (float) randomNum.nextRandomDouble();
// reset phase for interpolation
mPhase -= 1.0;
}
// interpolate current
return prevNoise + (mPhase * (currNoise - prevNoise));
}
}
/**
* Allpass delay modulated by a random ramp.
*/
private static class VariableAllPassDelay {
RandomModulator mModulator = new RandomModulator();
private float[] mBuffer;
private int mLength;
private int mCursor;
private int mModulationDepth;
private float mCoefficient = 0.65f;
VariableAllPassDelay(int length, float coefficient) {
mLength = length;
mBuffer = new float[2 * length];
mCoefficient = coefficient;
setModulationDepth(40);
}
void setModulationDepth(int depthInFrames) {
mModulationDepth = Math.min(depthInFrames, mLength / 3);
}
void setFrequency(float frequency, float sampleRate) {
mModulator.setFrequency(frequency, sampleRate);
}
private float process(float input) {
int readCursor = mCursor - mLength;
readCursor += (int)(mModulator.generate() * mModulationDepth);
if (readCursor < 0) readCursor += mBuffer.length;
float z = mBuffer[readCursor];
float x = input - (z * mCoefficient );
mBuffer[mCursor] = x;
mCursor++;
if (mCursor >= mBuffer.length) mCursor = 0;
return z + (x * mCoefficient);
}
}
// y = x*c + y*(1-c)
private static class OnePoleLowPassFilter {
private float mDelay;
private float mCoefficient;
OnePoleLowPassFilter(float coefficient) {
mCoefficient = coefficient;
}
private float process(float input) {
float output = (input * mCoefficient)
+ (mDelay * (1.0f - mCoefficient));
mDelay = output;
return output;
}
public void setCoefficient(float coefficient) {
mCoefficient = coefficient;
}
}
// One side of the figure eight.
private class ReverbSide {
VariableAllPassDelay variableDelay;
OnePoleLowPassFilter mLowPass = new OnePoleLowPassFilter(1.0f - DAMPING);
SimpleDelay mDelay1;
AllPassDelay mAllPassDelay;
SimpleDelay mDelay2;
private float outputScaler = 0.6f;
private float mOutput;
ReverbSide(int d1, int d2, int d3, int d4) {
// This all pass reverses the signs.
variableDelay = new VariableAllPassDelay(d1, 0.0f - DECAY_DIFFUSION_1);
mDelay1 = new SimpleDelay(d2);
mAllPassDelay = new AllPassDelay(d3, DECAY_DIFFUSION_2);
mDelay2 = new SimpleDelay(d4);
}
public void setFrequency(float frequency, float sampleRate) {
variableDelay.setFrequency(frequency, sampleRate);
}
private float process(float input) {
float temp = variableDelay.process(input);
mOutput = temp;
temp = mDelay1.process(temp);
mOutput -= temp;
temp = mLowPass.process(temp);
temp *= mDecay;
temp = mAllPassDelay.process(temp);
mOutput += temp;
temp = mDelay2.process(temp);
temp *= mDecay;
mOutput -= temp;
return temp;
}
private float getOutput() {
return mOutput * outputScaler;
}
public void setDamping(float damping) {
mLowPass.setCoefficient(1.0f - damping);
}
}
private float mDecay;
private float mLeftFeedback;
private float mRightFeedback;
private double mSize = 1.0;
private double mPreviousTime = -1.0;
private OnePoleLowPassFilter mBandwidthLowPass = new OnePoleLowPassFilter(BANDWIDTH);
private AllPassDelay mDiffusion1 = new AllPassDelay(142, INPUT_DIFFUSION_1);
private AllPassDelay mDiffusion2 = new AllPassDelay(107, INPUT_DIFFUSION_1);
private AllPassDelay mDiffusion3 = new AllPassDelay(379, INPUT_DIFFUSION_2);
private AllPassDelay mDiffusion4 = new AllPassDelay(277, INPUT_DIFFUSION_2);
private ReverbSide mLeftSide;
private ReverbSide mRightSide;
/**
* Create a PlateReverb with a default size of 1.0.
*/
public PlateReverb() {
this(1.0);
}
/**
* This reverb uses multiple delay lines. The size parameter
* scales the allocated size. A value of 1.0 is the default.
* At low values the reverb will sound more metallic, like a comb filter.
* At larger values it will sound more echoey.
*
* The size value will be clipped between 0.05 and 5.0.
*
* @param size adjust internal delay sizes
*/
public PlateReverb(double size) {
addPort(input = new UnitInputPort("Input"));
size = Math.max(0.05, Math.min(5.0, size));
mSize = size;
addPort(time = new UnitInputPort("Time"));
time.setup(0.01, 2.0, 30.0);
addPort(damping = new UnitInputPort("Damping"));
damping.setup(0.0001, DAMPING, 1.0);
addPort(output = new UnitOutputPort(2,"Output"));
// delay line sizes
// These are from the original paper.
// int[] zs = {142, 107, 379, 277, // diffusion
// 672, 4453, 1800, 3720, // left
// 908, 4217, 2656, 3163}; // right
// These are aligned to nearby primes.
int[] zs = {149, 107, 379, 277, // diffusion
677, 4453, 1801, 3727, // left
911, 4217, 2657, 3169}; // right
mDiffusion1 = new AllPassDelay((int)(zs[0] * size), INPUT_DIFFUSION_1);
mDiffusion2 = new AllPassDelay((int)(zs[1] * size), INPUT_DIFFUSION_1);
mDiffusion3 = new AllPassDelay((int)(zs[2] * size), INPUT_DIFFUSION_2);
mDiffusion4 = new AllPassDelay((int)(zs[3] * size), INPUT_DIFFUSION_2);
mLeftSide = new ReverbSide((int)(zs[4] * size), (int)(zs[5] * size),
(int)(zs[6] * size), (int)(zs[7] * size));
mRightSide = new ReverbSide((int)(zs[8] * size), (int)(zs[9] * size),
(int)(zs[10] * size), (int)(zs[11] * size));
mLeftSide.setFrequency(0.7f, 44100.0f); // TODO use actual sample rate
mRightSide.setFrequency(1.2f, 44100.0f); // TODO use actual sample rate
}
// Unfortunately, Java does not have a simple duple support.
// So we return void and then get teh two values from the left and
// right sides.
private void process(float x) {
x = mBandwidthLowPass.process(x);
x = mDiffusion1.process(x);
x = mDiffusion2.process(x);
x = mDiffusion3.process(x);
x = mDiffusion4.process(x);
// left side of the figure eight uses right side feedback
float leftSum = x + mRightFeedback;
mLeftFeedback = mLeftSide.process(leftSum);
// right side of the figure eight uses left side feedback
float rightSum = x + mLeftFeedback;
mRightFeedback = mRightSide.process(rightSum);
}
// This equation was derived from measuring the actual RT60 as a function
// of size and decay.
// time = size * (0.52 - (4.7 * Math.log(1.0001 - (decay * decay))));
// time/size = 0.52 - (4.7 * Math.log(1.0001 - (decay * decay)))
// time/size - 0.52 = -4.7 * Math.log(1.0001 - (decay * decay))
// (0.52 - (time/size))/ 4.7 = Math.log(1.0001 - (decay * decay))
// Math.exp((0.52 - (time/size))/ 4.7) = 1.0001 - (decay * decay)
// 1.001 - Math.exp((0.52 - (time/size))/ 4.7) = decay * decay
// decay = Math.sqrt(1.001 - Math.exp((0.52 - (time/size))/ 4.7))
private double convertTimeToDecay(double size, double time) {
double exponent = (0.52 - (time / size))/ 4.7;
double square = 1.001 - Math.exp(exponent); // TODO optimize
double decay = Math.sqrt(Math.max(0.0, square)); // avoid sqrt(negative)
return Math.min(MAX_DECAY, decay);
}
@Override
public void generate(int start, int limit) {
double[] inputs = input.getValues();
double[] leftOutputs = output.getValues(0);
double[] rightOutputs = output.getValues(1);
double timeValue = (float) time.getValues()[0];
if (timeValue != mPreviousTime) {
mDecay = (float) convertTimeToDecay(mSize, timeValue);
mPreviousTime = timeValue;
}
float dampingValue = (float) damping.getValues()[0];
mLeftSide.setDamping(dampingValue);
mRightSide.setDamping(dampingValue);
for (int i = start; i < limit; i++) {
process((float) inputs[i]);
leftOutputs[i] = mLeftSide.getOutput();
rightOutputs[i] = mRightSide.getOutput();
}
}
}
|