1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
/*
* Copyright 2009 Phil Burk, Mobileer Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.softsynth.math;
//Simple Fast Fourier Transform.
public class FourierMath {
static private final int MAX_SIZE_LOG_2 = 16;
static BitReverseTable[] reverseTables = new BitReverseTable[MAX_SIZE_LOG_2];
static DoubleSineTable[] sineTables = new DoubleSineTable[MAX_SIZE_LOG_2];
static FloatSineTable[] floatSineTables = new FloatSineTable[MAX_SIZE_LOG_2];
private static class DoubleSineTable {
double[] sineValues;
DoubleSineTable(int numBits) {
int len = 1 << numBits;
sineValues = new double[1 << numBits];
for (int i = 0; i < len; i++) {
sineValues[i] = Math.sin((i * Math.PI * 2.0) / len);
}
}
}
private static double[] getDoubleSineTable(int n) {
DoubleSineTable sineTable = sineTables[n];
if (sineTable == null) {
sineTable = new DoubleSineTable(n);
sineTables[n] = sineTable;
}
return sineTable.sineValues;
}
private static class FloatSineTable {
float[] sineValues;
FloatSineTable(int numBits) {
int len = 1 << numBits;
sineValues = new float[1 << numBits];
for (int i = 0; i < len; i++) {
sineValues[i] = (float) Math.sin((i * Math.PI * 2.0) / len);
}
}
}
private static float[] getFloatSineTable(int n) {
FloatSineTable sineTable = floatSineTables[n];
if (sineTable == null) {
sineTable = new FloatSineTable(n);
floatSineTables[n] = sineTable;
}
return sineTable.sineValues;
}
private static class BitReverseTable {
int[] reversedBits;
BitReverseTable(int numBits) {
reversedBits = new int[1 << numBits];
for (int i = 0; i < reversedBits.length; i++) {
reversedBits[i] = reverseBits(i, numBits);
}
}
static int reverseBits(int index, int numBits) {
int i, rev;
for (i = rev = 0; i < numBits; i++) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
}
private static int[] getReverseTable(int n) {
BitReverseTable reverseTable = reverseTables[n];
if (reverseTable == null) {
reverseTable = new BitReverseTable(n);
reverseTables[n] = reverseTable;
}
return reverseTable.reversedBits;
}
/**
* Calculate the amplitude of the sine wave associated with each bin of a complex FFT result.
*
* @param ar
* @param ai
* @param magnitudes
*/
public static void calculateMagnitudes(double ar[], double ai[], double[] magnitudes) {
for (int i = 0; i < magnitudes.length; ++i) {
magnitudes[i] = Math.sqrt((ar[i] * ar[i]) + (ai[i] * ai[i]));
}
}
/**
* Calculate the amplitude of the sine wave associated with each bin of a complex FFT result.
*
* @param ar
* @param ai
* @param magnitudes
*/
public static void calculateMagnitudes(float ar[], float ai[], float[] magnitudes) {
for (int i = 0; i < magnitudes.length; ++i) {
magnitudes[i] = (float) Math.sqrt((ar[i] * ar[i]) + (ai[i] * ai[i]));
}
}
public static void transform(int sign, int n, double ar[], double ai[]) {
double scale = (sign > 0) ? (2.0 / n) : (0.5);
int numBits = FourierMath.numBits(n);
int[] reverseTable = getReverseTable(numBits);
double[] sineTable = getDoubleSineTable(numBits);
int mask = n - 1;
int cosineOffset = n / 4; // phase offset between cos and sin
int i, j;
for (i = 0; i < n; i++) {
j = reverseTable[i];
if (j >= i) {
double tempr = ar[j] * scale;
double tempi = ai[j] * scale;
ar[j] = ar[i] * scale;
ai[j] = ai[i] * scale;
ar[i] = tempr;
ai[i] = tempi;
}
}
int mmax, stride;
int numerator = sign * n;
for (mmax = 1, stride = 2 * mmax; mmax < n; mmax = stride, stride = 2 * mmax) {
int phase = 0;
int phaseIncrement = numerator / (2 * mmax);
for (int m = 0; m < mmax; ++m) {
double wr = sineTable[(phase + cosineOffset) & mask]; // cosine
double wi = sineTable[phase];
for (i = m; i < n; i += stride) {
j = i + mmax;
double tr = (wr * ar[j]) - (wi * ai[j]);
double ti = (wr * ai[j]) + (wi * ar[j]);
ar[j] = ar[i] - tr;
ai[j] = ai[i] - ti;
ar[i] += tr;
ai[i] += ti;
}
phase = (phase + phaseIncrement) & mask;
}
mmax = stride;
}
}
public static void transform(int sign, int n, float ar[], float ai[]) {
float scale = (sign > 0) ? (2.0f / n) : (0.5f);
int numBits = FourierMath.numBits(n);
int[] reverseTable = getReverseTable(numBits);
float[] sineTable = getFloatSineTable(numBits);
int mask = n - 1;
int cosineOffset = n / 4; // phase offset between cos and sin
int i, j;
for (i = 0; i < n; i++) {
j = reverseTable[i];
if (j >= i) {
float tempr = ar[j] * scale;
float tempi = ai[j] * scale;
ar[j] = ar[i] * scale;
ai[j] = ai[i] * scale;
ar[i] = tempr;
ai[i] = tempi;
}
}
int mmax, stride;
int numerator = sign * n;
for (mmax = 1, stride = 2 * mmax; mmax < n; mmax = stride, stride = 2 * mmax) {
int phase = 0;
int phaseIncrement = numerator / (2 * mmax);
for (int m = 0; m < mmax; ++m) {
float wr = sineTable[(phase + cosineOffset) & mask]; // cosine
float wi = sineTable[phase];
for (i = m; i < n; i += stride) {
j = i + mmax;
float tr = (wr * ar[j]) - (wi * ai[j]);
float ti = (wr * ai[j]) + (wi * ar[j]);
ar[j] = ar[i] - tr;
ai[j] = ai[i] - ti;
ar[i] += tr;
ai[i] += ti;
}
phase = (phase + phaseIncrement) & mask;
}
mmax = stride;
}
}
/**
* Calculate log2(n)
*
* @param powerOf2 must be a power of two, for example 512 or 1024
* @return for example, 9 for an input value of 512
*/
public static int numBits(int powerOf2) {
int i;
assert ((powerOf2 & (powerOf2 - 1)) == 0); // is it a power of 2?
for (i = -1; powerOf2 > 0; powerOf2 = powerOf2 >> 1, i++)
;
return i;
}
/**
* Calculate an FFT in place, modifying the input arrays.
*
* @param n
* @param ar
* @param ai
*/
public static void fft(int n, double ar[], double ai[]) {
transform(1, n, ar, ai); // TODO -1 or 1
}
/**
* Calculate an inverse FFT in place, modifying the input arrays.
*
* @param n
* @param ar
* @param ai
*/
public static void ifft(int n, double ar[], double ai[]) {
transform(-1, n, ar, ai); // TODO -1 or 1
}
}
|