1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/*
* Copyright 2009 Phil Burk, Mobileer Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.jsyn.util;
import com.softsynth.math.FourierMath;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import static org.junit.jupiter.api.Assertions.assertEquals;
public class TestFFT {
private static final Logger LOGGER = LoggerFactory.getLogger(TestFFT.class);
public void checkSingleSineDouble(int size, int bin) {
double[] ar = new double[size];
double[] ai = new double[size];
double[] magnitudes = new double[size];
double amplitude = 1.0;
addSineWave(size, bin, ar, amplitude);
FourierMath.transform(1, size, ar, ai);
FourierMath.calculateMagnitudes(ar, ai, magnitudes);
assertEquals(0.0, magnitudes[bin-1], 0.000001, "magnitude");
assertEquals(amplitude, magnitudes[bin], 0.000001, "magnitude");
assertEquals(0.0, magnitudes[bin+1], 0.000001, "magnitude");
/*
for (int i = 0; i < magnitudes.length; i++) {
System.out.printf("%d = %9.7f\n", i, magnitudes[i]);
}
*/
}
public void checkSingleSineFloat(int size, int bin) {
float[] ar = new float[size];
float[] ai = new float[size];
float[] magnitudes = new float[size];
double amplitude = 1.0;
addSineWave(size, bin, ar, amplitude);
FourierMath.transform(1, size, ar, ai);
FourierMath.calculateMagnitudes(ar, ai, magnitudes);
assertEquals(0.0f, magnitudes[bin-1], 0.000001, "magnitude");
assertEquals(amplitude, magnitudes[bin], 0.000001, "magnitude");
assertEquals(0.0f, magnitudes[bin+1], 0.000001, "magnitude");
/*
for (int i = 0; i < magnitudes.length; i++) {
System.out.printf("%d = %9.7f\n", i, magnitudes[i]);
}
*/
}
public void checkMultipleSine(int size, int[] bins, double[] amplitudes) {
double[] ar = new double[size];
double[] ai = new double[size];
double[] magnitudes = new double[size];
for(int i = 0; i<bins.length; i++) {
addSineWave(size, bins[i], ar, amplitudes[i]);
}
FourierMath.transform(1, size, ar, ai);
FourierMath.calculateMagnitudes(ar, ai, magnitudes);
for(int bin = 0; bin<size; bin++) {
System.out.printf("%d = %9.7f\n", bin, magnitudes[bin]);
double amplitude = 0.0;
for(int i = 0; i<bins.length; i++) {
if ((bin == bins[i]) || (bin == (size - bins[i]))) {
amplitude = amplitudes[i];
break;
}
}
assertEquals(amplitude, magnitudes[bin], 0.000001, "magnitude");
}
}
private void addSineWave(int size, int bin, double[] ar, double amplitude) {
double phase = 0.0;
double phaseIncrement = 2.0 * Math.PI * bin / size;
for (int i = 0; i < size; i++) {
ar[i] += Math.sin(phase) * amplitude;
phase += phaseIncrement;
}
}
private void addSineWave(int size, int bin, float[] ar, double amplitude) {
double phase = 0.0;
double phaseIncrement = 2.0 * Math.PI * bin / size;
for (int i = 0; i < size; i++) {
ar[i] += (float) (Math.sin(phase) * amplitude);
phase += phaseIncrement;
}
}
public void testSinglesDouble() {
checkSingleSineDouble(32, 1);
checkSingleSineDouble(32, 4);
checkSingleSineDouble(64, 5);
checkSingleSineDouble(256, 3);
}
public void testSinglesFloat() {
checkSingleSineFloat(32, 1);
checkSingleSineFloat(32, 4);
checkSingleSineFloat(64, 5);
checkSingleSineFloat(256, 3);
}
public void testMultipleSines32() {
int[] bins = { 1, 5 };
double[] amplitudes = { 1.0, 2.0 };
checkMultipleSine(32, bins, amplitudes);
}
public void testMultipleSines64() {
int[] bins = { 2, 4, 7 };
double[] amplitudes = { 1.0, 0.3, 0.5 };
checkMultipleSine(64, bins, amplitudes);
}
public void checkInverseFftDouble(int size, int bin) {
double[] ar1 = new double[size];
double[] ai1 = new double[size];
double[] ar2 = new double[size];
double[] ai2 = new double[size];
double amplitude = 1.0;
addSineWave(size, bin, ar1, amplitude);
// Save a copy of the source.
System.arraycopy(ar1, 0, ar2, 0, size);
System.arraycopy(ai1, 0, ai2, 0, size);
FourierMath.transform(1, size, ar1, ai1); // FFT
FourierMath.transform(-1, size, ar1, ai1); // IFFT
for (int i = 0; i < size; i++) {
assertEquals(ar2[i], ar1[i], 0.00001);
assertEquals(ai2[i], ai1[i], 0.00001);
}
}
public void checkInverseFftFloat(int size, int bin) {
float[] ar1 = new float[size];
float[] ai1 = new float[size];
float[] ar2 = new float[size];
float[] ai2 = new float[size];
double amplitude = 1.0;
addSineWave(size, bin, ar1, amplitude);
// Save a copy of the source.
System.arraycopy(ar1, 0, ar2, 0, size);
System.arraycopy(ai1, 0, ai2, 0, size);
FourierMath.transform(1, size, ar1, ai1); // FFT
FourierMath.transform(-1, size, ar1, ai1); // IFFT
for (int i = 0; i < size; i++) {
assertEquals(ar2[i], ar1[i], 0.00001);
assertEquals(ai2[i], ai1[i], 0.00001);
}
}
public void testInverseDouble() {
checkInverseFftDouble(32, 1);
checkInverseFftDouble(32, 2);
checkInverseFftDouble(128, 17);
checkInverseFftDouble(512, 23);
}
public void testInverseFloat() {
checkInverseFftFloat(32, 1);
checkInverseFftFloat(32, 2);
checkInverseFftFloat(128, 17);
checkInverseFftFloat(512, 23);
}
}
|