aboutsummaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/Vision/Vision_Common.h
diff options
context:
space:
mode:
authorSven Gothel <[email protected]>2015-03-28 01:43:35 +0100
committerSven Gothel <[email protected]>2015-03-28 01:43:35 +0100
commit4207f9c279e832e3afcb3f5fc6cd8d84cb4cfe4c (patch)
treecf3671058d55b47ab6cb6f36f369928606137628 /LibOVR/Src/Vision/Vision_Common.h
parentc29cd1a2fbff6282bab956ad61661ac9d48c4e6e (diff)
Bump OculusVR RIFT SDK to 0.5.0.1vanilla_0.5.0.1
Diffstat (limited to 'LibOVR/Src/Vision/Vision_Common.h')
-rw-r--r--LibOVR/Src/Vision/Vision_Common.h299
1 files changed, 299 insertions, 0 deletions
diff --git a/LibOVR/Src/Vision/Vision_Common.h b/LibOVR/Src/Vision/Vision_Common.h
new file mode 100644
index 0000000..0610adb
--- /dev/null
+++ b/LibOVR/Src/Vision/Vision_Common.h
@@ -0,0 +1,299 @@
+/************************************************************************************
+
+Filename : OVR_Vision_Common.h
+Content : Common data structures that are used in multiple vision files
+Created : November 25, 2014
+Authors : Max Katsev
+
+Copyright : Copyright 2014 Oculus VR, LLC All Rights reserved.
+
+Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License");
+you may not use the Oculus VR Rift SDK except in compliance with the License,
+which is provided at the time of installation or download, or which
+otherwise accompanies this software in either electronic or hard copy form.
+
+You may obtain a copy of the License at
+
+http://www.oculusvr.com/licenses/LICENSE-3.2
+
+Unless required by applicable law or agreed to in writing, the Oculus VR SDK
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+*************************************************************************************/
+
+#ifndef OVR_Vision_Common_h
+#define OVR_Vision_Common_h
+
+#include "Kernel/OVR_RefCount.h"
+#include "Extras/OVR_Math.h"
+#include "Kernel/OVR_Array.h"
+#include "Kernel/OVR_Log.h"
+#include "Sensors/OVR_DeviceConstants.h"
+
+// Compatible types (these are declared in global namespace)
+typedef struct ovrPoseStatef_ ovrPoseStatef;
+typedef struct ovrPoseStated_ ovrPoseStated;
+
+namespace OVR { namespace Vision {
+
+// Global "calibration mode" used by calibration tools to change
+// the behavior of the SDK for calibration/experimentation purposes.
+// This flag is set at system startup by calibration tools, and never changed.
+
+extern int BundleCalibrationMode;
+
+// Vision <-> OVR transform functions
+//
+// These transforms are required across the interface to many of the
+// matching and reconstruction functions.
+//
+// OVR system is x+ right, y+ up, z+ back.
+// Vision system is x+ right, y+ down, z+ forward.
+// This is a 180 degree rotation about X axis.
+//
+template<typename T> inline Vector3<T> VisionFromOvr(const Vector3<T>& ovr) { return Vector3<T>(ovr.x, -ovr.y, -ovr.z); }
+template<typename T> inline Vector3<T> OvrFromVision(const Vector3<T>& vision) { return Vector3<T>(vision.x, -vision.y, -vision.z); }
+
+template<typename T> inline Quat<T> VisionFromOvr(const Quat<T>& ovr) { return Quat<T>(ovr.x, -ovr.y, -ovr.z, ovr.w); }
+template<typename T> inline Quat<T> OvrFromVision(const Quat<T>& vision) { return Quat<T>(vision.x, -vision.y, -vision.z, vision.w); }
+
+template<typename T> inline Pose<T> VisionFromOvr(const Pose<T>& ovr) { return Pose<T>(VisionFromOvr(ovr.Rotation), VisionFromOvr(ovr.Translation)); }
+template<typename T> inline Pose<T> OvrFromVision(const Pose<T>& vision) { return Pose<T>(OvrFromVision(vision.Rotation), OvrFromVision(vision.Translation)); }
+
+struct ImuSample
+{
+ double Time;
+
+ Vector3d Accelerometer;
+ Vector3d Gyro;
+ Vector3d Magnetometer;
+ double Temperature;
+
+ ImuSample() : Time(-1),
+ Temperature(-1) {}
+
+ ImuSample(const SensorDataType& data) : Time(data.AbsoluteTimeSeconds),
+ Accelerometer(data.Acceleration),
+ Gyro(data.RotationRate),
+ Magnetometer(data.MagneticField),
+ Temperature(data.Temperature) {}
+};
+
+struct PoseSample
+{
+ double Time;
+ Posed ThePose;
+ Vector3d LinearVelocity, AngularVelocity;
+
+ // stats for LED tracking
+ int LedsCount;
+ double ObjectSpaceError;
+ // stats for sphere tracking
+ int ContourCount;
+ double CircleRadius;
+
+ bool HasOrientation, HasPosition, HasVelocities;
+ // true => ThePose == WorldFromImu, false => ThePose == CameraFromImu
+ bool IsInWorldFrame;
+
+ void ApplyWorldFromCamera(const Posed& worldFromCamera)
+ {
+ OVR_ASSERT(!IsInWorldFrame);
+
+ IsInWorldFrame = true;
+ ThePose = worldFromCamera * ThePose;
+ if (HasVelocities)
+ {
+ LinearVelocity = worldFromCamera.Rotate(LinearVelocity);
+ AngularVelocity = worldFromCamera.Rotate(AngularVelocity);
+ }
+ }
+
+ friend PoseSample operator*(const PoseSample& sample, const Posed& trans)
+ {
+ PoseSample result = sample;
+ result.ThePose = sample.ThePose * trans;
+ // if we don't have orientation, the result will be useless - this is probably not expected to happen
+ OVR_ASSERT(sample.HasOrientation);
+ result.HasPosition = sample.HasPosition && sample.HasOrientation;
+ return result;
+ }
+
+ PoseSample(double time = -1) : Time(time),
+ LedsCount(-1),
+ ObjectSpaceError(-1),
+ ContourCount(-1),
+ CircleRadius(-1),
+ HasOrientation(false),
+ HasPosition(false),
+ HasVelocities(false),
+ IsInWorldFrame(false) {}
+};
+
+struct PoseEstimate
+{
+ Posed WorldFromImu, CameraFromWorld;
+
+ bool HasPosition, HasOrientation, HasUp;
+
+ Posed CameraFromImu() const
+ {
+ return CameraFromWorld * WorldFromImu;
+ }
+
+ friend PoseEstimate operator*(const PoseEstimate& estimate, const Posed& trans)
+{
+ PoseEstimate result = estimate;
+ result.WorldFromImu = estimate.WorldFromImu * trans;
+ // if we don't have orientation, the result will be useless - this is probably not expected to happen
+ OVR_ASSERT(estimate.HasOrientation);
+ result.HasPosition = estimate.HasPosition && estimate.HasOrientation;
+ return result;
+ }
+
+ PoseEstimate(const Posed& worldFromCamera) :
+ CameraFromWorld(worldFromCamera.Inverted()),
+ HasPosition(false),
+ HasOrientation(false),
+ HasUp(false) {}
+};
+
+} // namespace OVR::Vision
+
+// PoseState describes the complete pose, or a rigid body configuration, at a
+// point in time, including first and second derivatives. It is used to specify
+// instantaneous location and movement of the headset.
+// SensorState is returned as a part of the sensor state.
+
+template<class T>
+class PoseState
+{
+public:
+ typedef typename CompatibleTypes<Pose<T> >::Type CompatibleType;
+
+ PoseState() : TimeInSeconds(0.0) { }
+
+ // float <-> double conversion constructor.
+ explicit PoseState(const PoseState<typename Math<T>::OtherFloatType> &src)
+ : ThePose(src.ThePose),
+ AngularVelocity(src.AngularVelocity), LinearVelocity(src.LinearVelocity),
+ AngularAcceleration(src.AngularAcceleration), LinearAcceleration(src.LinearAcceleration),
+ TimeInSeconds(src.TimeInSeconds)
+ { }
+
+ // C-interop support: PoseStatef <-> ovrPoseStatef
+ PoseState(const typename CompatibleTypes<PoseState<T> >::Type& src)
+ : ThePose(src.ThePose),
+ AngularVelocity(src.AngularVelocity), LinearVelocity(src.LinearVelocity),
+ AngularAcceleration(src.AngularAcceleration), LinearAcceleration(src.LinearAcceleration),
+ TimeInSeconds(src.TimeInSeconds)
+ { }
+
+ operator typename CompatibleTypes<PoseState<T> >::Type() const
+ {
+ typename CompatibleTypes<PoseState<T> >::Type result;
+ result.ThePose = ThePose;
+ result.AngularVelocity = AngularVelocity;
+ result.LinearVelocity = LinearVelocity;
+ result.AngularAcceleration = AngularAcceleration;
+ result.LinearAcceleration = LinearAcceleration;
+ result.TimeInSeconds = TimeInSeconds;
+ return result;
+ }
+
+ Pose<T> ThePose;
+ Vector3<T> AngularVelocity;
+ Vector3<T> LinearVelocity;
+ Vector3<T> AngularAcceleration;
+ Vector3<T> LinearAcceleration;
+ // Absolute time of this state sample; always a double measured in seconds.
+ double TimeInSeconds;
+
+ // ***** Helpers for Pose integration
+
+ // Stores and integrates gyro angular velocity reading for a given time step.
+ void StoreAndIntegrateGyro(Vector3d angVel, double dt)
+ {
+ AngularVelocity = angVel;
+ ThePose.Rotation *= Quatd::FromRotationVector(angVel * dt);
+ }
+
+ void StoreAndIntegrateAccelerometer(Vector3d linearAccel, double dt)
+ {
+ LinearAcceleration = linearAccel;
+ ThePose.Translation += LinearVelocity * dt + LinearAcceleration * (dt * dt * 0.5);
+ LinearVelocity += LinearAcceleration * dt;
+ }
+
+ friend PoseState operator*(const Pose<T>& trans, const PoseState& poseState)
+{
+ PoseState result;
+ result.ThePose = trans * poseState.ThePose;
+ result.LinearVelocity = trans.Rotate(poseState.LinearVelocity);
+ result.LinearAcceleration = trans.Rotate(poseState.LinearAcceleration);
+ result.AngularVelocity = trans.Rotate(poseState.AngularVelocity);
+ result.AngularAcceleration = trans.Rotate(poseState.AngularAcceleration);
+ return result;
+}
+};
+
+// External API returns pose as float, but uses doubles internally for quaternion precision.
+typedef PoseState<float> PoseStatef;
+typedef PoseState<double> PoseStated;
+
+// Compatible types
+template<> struct CompatibleTypes<PoseState<float> > { typedef ovrPoseStatef Type; };
+template<> struct CompatibleTypes<PoseState<double> > { typedef ovrPoseStated Type; };
+
+// Handy debug output functions
+template<typename T>
+void Dump(const char* label, const Pose<T>& pose)
+{
+ auto t = pose.Translation * 1000;
+ auto r = pose.Rotation.ToRotationVector();
+ double angle = RadToDegree(r.Length());
+ if (r.LengthSq() > 0)
+ r.Normalize();
+ LogText("%s: %.2f, %.2f, %.2f mm, %.2f deg %.2f, %.2f, %.2f\n",
+ label, t.x, t.y, t.z, angle, r.x, r.y, r.z);
+}
+
+template<typename T>
+void Dump(const char* label, const Vector3<T>& v)
+{
+ LogText("%s %.5g, %.5g, %.5g (%.5g)\n", label, v.x, v.y, v.z, v.Length());
+}
+
+template<typename T>
+void Dump(const char* label, const Quat<T>& q)
+{
+ auto r = q.ToRotationVector();
+ auto axis = r.Normalized();
+ auto angle = RadToDegree(r.Length());
+ LogText("%s %.2f (%.2f, %.2f, %.2f)\n", label, angle, axis.x, axis.y, axis.z);
+}
+
+template<typename T>
+void Dump(const char* label, double time, const Pose<T>& p)
+{
+ LogText("%.4f: ", time);
+ Dump(label, p);
+}
+
+static_assert((sizeof(PoseState<double>) == sizeof(Pose<double>) + 4 * sizeof(Vector3<double>) + sizeof(double)), "sizeof(PoseState<double>) failure");
+#ifdef OVR_CPU_X86_64
+static_assert((sizeof(PoseState<float>) == sizeof(Pose<float>) + 4 * sizeof(Vector3<float>) + sizeof(uint32_t)+sizeof(double)), "sizeof(PoseState<float>) failure"); //TODO: Manually pad template.
+#elif defined(OVR_OS_WIN32) // The Windows 32 bit ABI aligns 64 bit values on 64 bit boundaries
+static_assert((sizeof(PoseState<float>) == sizeof(Pose<float>) + 4 * sizeof(Vector3<float>) + sizeof(uint32_t)+sizeof(double)), "sizeof(PoseState<float>) failure");
+#elif defined(OVR_CPU_ARM) // ARM aligns 64 bit values to 64 bit boundaries: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0472k/chr1359125009502.html
+static_assert((sizeof(PoseState<float>) == sizeof(Pose<float>) + 4 * sizeof(Vector3<float>) + sizeof(uint32_t)+sizeof(double)), "sizeof(PoseState<float>) failure");
+#else // Else Unix/Apple 32 bit ABI, which aligns 64 bit values on 32 bit boundaries.
+static_assert((sizeof(PoseState<float>) == sizeof(Pose<float>) + 4 * sizeof(Vector3<float>) + sizeof(double)), "sizeof(PoseState<float>) failure:");
+#endif
+
+} // namespace OVR
+
+#endif // OVR_Vision_Common_h