diff options
Diffstat (limited to 'LibOVR/Src/Kernel/OVR_Alg.h')
-rw-r--r-- | LibOVR/Src/Kernel/OVR_Alg.h | 1060 |
1 files changed, 1060 insertions, 0 deletions
diff --git a/LibOVR/Src/Kernel/OVR_Alg.h b/LibOVR/Src/Kernel/OVR_Alg.h new file mode 100644 index 0000000..e03cea0 --- /dev/null +++ b/LibOVR/Src/Kernel/OVR_Alg.h @@ -0,0 +1,1060 @@ +/************************************************************************************ + +PublicHeader: OVR.h +Filename : OVR_Alg.h +Content : Simple general purpose algorithms: Sort, Binary Search, etc. +Created : September 19, 2012 +Notes : + +Copyright : Copyright 2014 Oculus VR, Inc. All Rights reserved. + +Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License"); +you may not use the Oculus VR Rift SDK except in compliance with the License, +which is provided at the time of installation or download, or which +otherwise accompanies this software in either electronic or hard copy form. + +You may obtain a copy of the License at + +http://www.oculusvr.com/licenses/LICENSE-3.1 + +Unless required by applicable law or agreed to in writing, the Oculus VR SDK +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. + +************************************************************************************/ + +#ifndef OVR_Alg_h +#define OVR_Alg_h + +#include "OVR_Types.h" +#include <string.h> + +namespace OVR { namespace Alg { + + +//----------------------------------------------------------------------------------- +// ***** Operator extensions + +template <typename T> OVR_FORCE_INLINE void Swap(T &a, T &b) +{ T temp(a); a = b; b = temp; } + + +// ***** min/max are not implemented in Visual Studio 6 standard STL + +template <typename T> OVR_FORCE_INLINE const T Min(const T a, const T b) +{ return (a < b) ? a : b; } + +template <typename T> OVR_FORCE_INLINE const T Max(const T a, const T b) +{ return (b < a) ? a : b; } + +template <typename T> OVR_FORCE_INLINE const T Clamp(const T v, const T minVal, const T maxVal) +{ return Max<T>(minVal, Min<T>(v, maxVal)); } + +template <typename T> OVR_FORCE_INLINE int Chop(T f) +{ return (int)f; } + +template <typename T> OVR_FORCE_INLINE T Lerp(T a, T b, T f) +{ return (b - a) * f + a; } + + +// These functions stand to fix a stupid VC++ warning (with /Wp64 on): +// "warning C4267: 'argument' : conversion from 'size_t' to 'const unsigned', possible loss of data" +// Use these functions instead of gmin/gmax if the argument has size +// of the pointer to avoid the warning. Though, functionally they are +// absolutelly the same as regular gmin/gmax. +template <typename T> OVR_FORCE_INLINE const T PMin(const T a, const T b) +{ + OVR_COMPILER_ASSERT(sizeof(T) == sizeof(UPInt)); + return (a < b) ? a : b; +} +template <typename T> OVR_FORCE_INLINE const T PMax(const T a, const T b) +{ + OVR_COMPILER_ASSERT(sizeof(T) == sizeof(UPInt)); + return (b < a) ? a : b; +} + + +template <typename T> OVR_FORCE_INLINE const T Abs(const T v) +{ return (v>=0) ? v : -v; } + + +//----------------------------------------------------------------------------------- +// ***** OperatorLess +// +template<class T> struct OperatorLess +{ + static bool Compare(const T& a, const T& b) + { + return a < b; + } +}; + + +//----------------------------------------------------------------------------------- +// ***** QuickSortSliced +// +// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe. +// The range is specified with start, end, where "end" is exclusive! +// The comparison predicate must be specified. +template<class Array, class Less> +void QuickSortSliced(Array& arr, UPInt start, UPInt end, Less less) +{ + enum + { + Threshold = 9 + }; + + if(end - start < 2) return; + + SPInt stack[80]; + SPInt* top = stack; + SPInt base = (SPInt)start; + SPInt limit = (SPInt)end; + + for(;;) + { + SPInt len = limit - base; + SPInt i, j, pivot; + + if(len > Threshold) + { + // we use base + len/2 as the pivot + pivot = base + len / 2; + Swap(arr[base], arr[pivot]); + + i = base + 1; + j = limit - 1; + + // now ensure that *i <= *base <= *j + if(less(arr[j], arr[i])) Swap(arr[j], arr[i]); + if(less(arr[base], arr[i])) Swap(arr[base], arr[i]); + if(less(arr[j], arr[base])) Swap(arr[j], arr[base]); + + for(;;) + { + do i++; while( less(arr[i], arr[base]) ); + do j--; while( less(arr[base], arr[j]) ); + + if( i > j ) + { + break; + } + + Swap(arr[i], arr[j]); + } + + Swap(arr[base], arr[j]); + + // now, push the largest sub-array + if(j - base > limit - i) + { + top[0] = base; + top[1] = j; + base = i; + } + else + { + top[0] = i; + top[1] = limit; + limit = j; + } + top += 2; + } + else + { + // the sub-array is small, perform insertion sort + j = base; + i = j + 1; + + for(; i < limit; j = i, i++) + { + for(; less(arr[j + 1], arr[j]); j--) + { + Swap(arr[j + 1], arr[j]); + if(j == base) + { + break; + } + } + } + if(top > stack) + { + top -= 2; + base = top[0]; + limit = top[1]; + } + else + { + break; + } + } + } +} + + +//----------------------------------------------------------------------------------- +// ***** QuickSortSliced +// +// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe. +// The range is specified with start, end, where "end" is exclusive! +// The data type must have a defined "<" operator. +template<class Array> +void QuickSortSliced(Array& arr, UPInt start, UPInt end) +{ + typedef typename Array::ValueType ValueType; + QuickSortSliced(arr, start, end, OperatorLess<ValueType>::Compare); +} + +// Same as corresponding G_QuickSortSliced but with checking array limits to avoid +// crash in the case of wrong comparator functor. +template<class Array, class Less> +bool QuickSortSlicedSafe(Array& arr, UPInt start, UPInt end, Less less) +{ + enum + { + Threshold = 9 + }; + + if(end - start < 2) return true; + + SPInt stack[80]; + SPInt* top = stack; + SPInt base = (SPInt)start; + SPInt limit = (SPInt)end; + + for(;;) + { + SPInt len = limit - base; + SPInt i, j, pivot; + + if(len > Threshold) + { + // we use base + len/2 as the pivot + pivot = base + len / 2; + Swap(arr[base], arr[pivot]); + + i = base + 1; + j = limit - 1; + + // now ensure that *i <= *base <= *j + if(less(arr[j], arr[i])) Swap(arr[j], arr[i]); + if(less(arr[base], arr[i])) Swap(arr[base], arr[i]); + if(less(arr[j], arr[base])) Swap(arr[j], arr[base]); + + for(;;) + { + do + { + i++; + if (i >= limit) + return false; + } while( less(arr[i], arr[base]) ); + do + { + j--; + if (j < 0) + return false; + } while( less(arr[base], arr[j]) ); + + if( i > j ) + { + break; + } + + Swap(arr[i], arr[j]); + } + + Swap(arr[base], arr[j]); + + // now, push the largest sub-array + if(j - base > limit - i) + { + top[0] = base; + top[1] = j; + base = i; + } + else + { + top[0] = i; + top[1] = limit; + limit = j; + } + top += 2; + } + else + { + // the sub-array is small, perform insertion sort + j = base; + i = j + 1; + + for(; i < limit; j = i, i++) + { + for(; less(arr[j + 1], arr[j]); j--) + { + Swap(arr[j + 1], arr[j]); + if(j == base) + { + break; + } + } + } + if(top > stack) + { + top -= 2; + base = top[0]; + limit = top[1]; + } + else + { + break; + } + } + } + return true; +} + +template<class Array> +bool QuickSortSlicedSafe(Array& arr, UPInt start, UPInt end) +{ + typedef typename Array::ValueType ValueType; + return QuickSortSlicedSafe(arr, start, end, OperatorLess<ValueType>::Compare); +} + +//----------------------------------------------------------------------------------- +// ***** QuickSort +// +// Sort an array Array, ArrayPaged, ArrayUnsafe. +// The array must have GetSize() function. +// The comparison predicate must be specified. +template<class Array, class Less> +void QuickSort(Array& arr, Less less) +{ + QuickSortSliced(arr, 0, arr.GetSize(), less); +} + +// checks for boundaries +template<class Array, class Less> +bool QuickSortSafe(Array& arr, Less less) +{ + return QuickSortSlicedSafe(arr, 0, arr.GetSize(), less); +} + + +//----------------------------------------------------------------------------------- +// ***** QuickSort +// +// Sort an array Array, ArrayPaged, ArrayUnsafe. +// The array must have GetSize() function. +// The data type must have a defined "<" operator. +template<class Array> +void QuickSort(Array& arr) +{ + typedef typename Array::ValueType ValueType; + QuickSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare); +} + +template<class Array> +bool QuickSortSafe(Array& arr) +{ + typedef typename Array::ValueType ValueType; + return QuickSortSlicedSafe(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare); +} + +//----------------------------------------------------------------------------------- +// ***** InsertionSortSliced +// +// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe. +// The range is specified with start, end, where "end" is exclusive! +// The comparison predicate must be specified. +// Unlike Quick Sort, the Insertion Sort works much slower in average, +// but may be much faster on almost sorted arrays. Besides, it guarantees +// that the elements will not be swapped if not necessary. For example, +// an array with all equal elements will remain "untouched", while +// Quick Sort will considerably shuffle the elements in this case. +template<class Array, class Less> +void InsertionSortSliced(Array& arr, UPInt start, UPInt end, Less less) +{ + UPInt j = start; + UPInt i = j + 1; + UPInt limit = end; + + for(; i < limit; j = i, i++) + { + for(; less(arr[j + 1], arr[j]); j--) + { + Swap(arr[j + 1], arr[j]); + if(j <= start) + { + break; + } + } + } +} + + +//----------------------------------------------------------------------------------- +// ***** InsertionSortSliced +// +// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe. +// The range is specified with start, end, where "end" is exclusive! +// The data type must have a defined "<" operator. +template<class Array> +void InsertionSortSliced(Array& arr, UPInt start, UPInt end) +{ + typedef typename Array::ValueType ValueType; + InsertionSortSliced(arr, start, end, OperatorLess<ValueType>::Compare); +} + +//----------------------------------------------------------------------------------- +// ***** InsertionSort +// +// Sort an array Array, ArrayPaged, ArrayUnsafe. +// The array must have GetSize() function. +// The comparison predicate must be specified. + +template<class Array, class Less> +void InsertionSort(Array& arr, Less less) +{ + InsertionSortSliced(arr, 0, arr.GetSize(), less); +} + +//----------------------------------------------------------------------------------- +// ***** InsertionSort +// +// Sort an array Array, ArrayPaged, ArrayUnsafe. +// The array must have GetSize() function. +// The data type must have a defined "<" operator. +template<class Array> +void InsertionSort(Array& arr) +{ + typedef typename Array::ValueType ValueType; + InsertionSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare); +} + +//----------------------------------------------------------------------------------- +// ***** Median +// Returns a median value of the input array. +// Caveats: partially sorts the array, returns a reference to the array element +// TBD: This needs to be optimized and generalized +// +template<class Array> +typename Array::ValueType& Median(Array& arr) +{ + UPInt count = arr.GetSize(); + UPInt mid = (count - 1) / 2; + OVR_ASSERT(count > 0); + + for (UPInt j = 0; j <= mid; j++) + { + UPInt min = j; + for (UPInt k = j + 1; k < count; k++) + if (arr[k] < arr[min]) + min = k; + Swap(arr[j], arr[min]); + } + return arr[mid]; +} + +//----------------------------------------------------------------------------------- +// ***** LowerBoundSliced +// +template<class Array, class Value, class Less> +UPInt LowerBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val, Less less) +{ + SPInt first = (SPInt)start; + SPInt len = (SPInt)(end - start); + SPInt half; + SPInt middle; + + while(len > 0) + { + half = len >> 1; + middle = first + half; + if(less(arr[middle], val)) + { + first = middle + 1; + len = len - half - 1; + } + else + { + len = half; + } + } + return (UPInt)first; +} + + +//----------------------------------------------------------------------------------- +// ***** LowerBoundSliced +// +template<class Array, class Value> +UPInt LowerBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val) +{ + return LowerBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare); +} + +//----------------------------------------------------------------------------------- +// ***** LowerBoundSized +// +template<class Array, class Value> +UPInt LowerBoundSized(const Array& arr, UPInt size, const Value& val) +{ + return LowerBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare); +} + +//----------------------------------------------------------------------------------- +// ***** LowerBound +// +template<class Array, class Value, class Less> +UPInt LowerBound(const Array& arr, const Value& val, Less less) +{ + return LowerBoundSliced(arr, 0, arr.GetSize(), val, less); +} + + +//----------------------------------------------------------------------------------- +// ***** LowerBound +// +template<class Array, class Value> +UPInt LowerBound(const Array& arr, const Value& val) +{ + return LowerBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare); +} + + + +//----------------------------------------------------------------------------------- +// ***** UpperBoundSliced +// +template<class Array, class Value, class Less> +UPInt UpperBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val, Less less) +{ + SPInt first = (SPInt)start; + SPInt len = (SPInt)(end - start); + SPInt half; + SPInt middle; + + while(len > 0) + { + half = len >> 1; + middle = first + half; + if(less(val, arr[middle])) + { + len = half; + } + else + { + first = middle + 1; + len = len - half - 1; + } + } + return (UPInt)first; +} + + +//----------------------------------------------------------------------------------- +// ***** UpperBoundSliced +// +template<class Array, class Value> +UPInt UpperBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val) +{ + return UpperBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare); +} + + +//----------------------------------------------------------------------------------- +// ***** UpperBoundSized +// +template<class Array, class Value> +UPInt UpperBoundSized(const Array& arr, UPInt size, const Value& val) +{ + return UpperBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare); +} + + +//----------------------------------------------------------------------------------- +// ***** UpperBound +// +template<class Array, class Value, class Less> +UPInt UpperBound(const Array& arr, const Value& val, Less less) +{ + return UpperBoundSliced(arr, 0, arr.GetSize(), val, less); +} + + +//----------------------------------------------------------------------------------- +// ***** UpperBound +// +template<class Array, class Value> +UPInt UpperBound(const Array& arr, const Value& val) +{ + return UpperBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare); +} + + +//----------------------------------------------------------------------------------- +// ***** ReverseArray +// +template<class Array> void ReverseArray(Array& arr) +{ + SPInt from = 0; + SPInt to = arr.GetSize() - 1; + while(from < to) + { + Swap(arr[from], arr[to]); + ++from; + --to; + } +} + + +// ***** AppendArray +// +template<class CDst, class CSrc> +void AppendArray(CDst& dst, const CSrc& src) +{ + UPInt i; + for(i = 0; i < src.GetSize(); i++) + dst.PushBack(src[i]); +} + +//----------------------------------------------------------------------------------- +// ***** ArrayAdaptor +// +// A simple adapter that provides the GetSize() method and overloads +// operator []. Used to wrap plain arrays in QuickSort and such. +template<class T> class ArrayAdaptor +{ +public: + typedef T ValueType; + ArrayAdaptor() : Data(0), Size(0) {} + ArrayAdaptor(T* ptr, UPInt size) : Data(ptr), Size(size) {} + UPInt GetSize() const { return Size; } + const T& operator [] (UPInt i) const { return Data[i]; } + T& operator [] (UPInt i) { return Data[i]; } +private: + T* Data; + UPInt Size; +}; + + +//----------------------------------------------------------------------------------- +// ***** GConstArrayAdaptor +// +// A simple const adapter that provides the GetSize() method and overloads +// operator []. Used to wrap plain arrays in LowerBound and such. +template<class T> class ConstArrayAdaptor +{ +public: + typedef T ValueType; + ConstArrayAdaptor() : Data(0), Size(0) {} + ConstArrayAdaptor(const T* ptr, UPInt size) : Data(ptr), Size(size) {} + UPInt GetSize() const { return Size; } + const T& operator [] (UPInt i) const { return Data[i]; } +private: + const T* Data; + UPInt Size; +}; + + + +//----------------------------------------------------------------------------------- +extern const UByte UpperBitTable[256]; +extern const UByte LowerBitTable[256]; + + + +//----------------------------------------------------------------------------------- +inline UByte UpperBit(UPInt val) +{ +#ifndef OVR_64BIT_POINTERS + + if (val & 0xFFFF0000) + { + return (val & 0xFF000000) ? + UpperBitTable[(val >> 24) ] + 24: + UpperBitTable[(val >> 16) & 0xFF] + 16; + } + return (val & 0xFF00) ? + UpperBitTable[(val >> 8) & 0xFF] + 8: + UpperBitTable[(val ) & 0xFF]; + +#else + + if (val & 0xFFFFFFFF00000000) + { + if (val & 0xFFFF000000000000) + { + return (val & 0xFF00000000000000) ? + UpperBitTable[(val >> 56) ] + 56: + UpperBitTable[(val >> 48) & 0xFF] + 48; + } + return (val & 0xFF0000000000) ? + UpperBitTable[(val >> 40) & 0xFF] + 40: + UpperBitTable[(val >> 32) & 0xFF] + 32; + } + else + { + if (val & 0xFFFF0000) + { + return (val & 0xFF000000) ? + UpperBitTable[(val >> 24) ] + 24: + UpperBitTable[(val >> 16) & 0xFF] + 16; + } + return (val & 0xFF00) ? + UpperBitTable[(val >> 8) & 0xFF] + 8: + UpperBitTable[(val ) & 0xFF]; + } + +#endif +} + +//----------------------------------------------------------------------------------- +inline UByte LowerBit(UPInt val) +{ +#ifndef OVR_64BIT_POINTERS + + if (val & 0xFFFF) + { + return (val & 0xFF) ? + LowerBitTable[ val & 0xFF]: + LowerBitTable[(val >> 8) & 0xFF] + 8; + } + return (val & 0xFF0000) ? + LowerBitTable[(val >> 16) & 0xFF] + 16: + LowerBitTable[(val >> 24) & 0xFF] + 24; + +#else + + if (val & 0xFFFFFFFF) + { + if (val & 0xFFFF) + { + return (val & 0xFF) ? + LowerBitTable[ val & 0xFF]: + LowerBitTable[(val >> 8) & 0xFF] + 8; + } + return (val & 0xFF0000) ? + LowerBitTable[(val >> 16) & 0xFF] + 16: + LowerBitTable[(val >> 24) & 0xFF] + 24; + } + else + { + if (val & 0xFFFF00000000) + { + return (val & 0xFF00000000) ? + LowerBitTable[(val >> 32) & 0xFF] + 32: + LowerBitTable[(val >> 40) & 0xFF] + 40; + } + return (val & 0xFF000000000000) ? + LowerBitTable[(val >> 48) & 0xFF] + 48: + LowerBitTable[(val >> 56) & 0xFF] + 56; + } + +#endif +} + + + +// ******* Special (optimized) memory routines +// Note: null (bad) pointer is not tested +class MemUtil +{ +public: + + // Memory compare + static int Cmp (const void* p1, const void* p2, UPInt byteCount) { return memcmp(p1, p2, byteCount); } + static int Cmp16(const void* p1, const void* p2, UPInt int16Count); + static int Cmp32(const void* p1, const void* p2, UPInt int32Count); + static int Cmp64(const void* p1, const void* p2, UPInt int64Count); +}; + +// ** Inline Implementation + +inline int MemUtil::Cmp16(const void* p1, const void* p2, UPInt int16Count) +{ + SInt16* pa = (SInt16*)p1; + SInt16* pb = (SInt16*)p2; + unsigned ic = 0; + if (int16Count == 0) + return 0; + while (pa[ic] == pb[ic]) + if (++ic==int16Count) + return 0; + return pa[ic] > pb[ic] ? 1 : -1; +} +inline int MemUtil::Cmp32(const void* p1, const void* p2, UPInt int32Count) +{ + SInt32* pa = (SInt32*)p1; + SInt32* pb = (SInt32*)p2; + unsigned ic = 0; + if (int32Count == 0) + return 0; + while (pa[ic] == pb[ic]) + if (++ic==int32Count) + return 0; + return pa[ic] > pb[ic] ? 1 : -1; +} +inline int MemUtil::Cmp64(const void* p1, const void* p2, UPInt int64Count) +{ + SInt64* pa = (SInt64*)p1; + SInt64* pb = (SInt64*)p2; + unsigned ic = 0; + if (int64Count == 0) + return 0; + while (pa[ic] == pb[ic]) + if (++ic==int64Count) + return 0; + return pa[ic] > pb[ic] ? 1 : -1; +} + +// ** End Inline Implementation + + +//----------------------------------------------------------------------------------- +// ******* Byte Order Conversions +namespace ByteUtil { + + // *** Swap Byte Order + + // Swap the byte order of a byte array + inline void SwapOrder(void* pv, int size) + { + UByte* pb = (UByte*)pv; + UByte temp; + for (int i = 0; i < size>>1; i++) + { + temp = pb[size-1-i]; + pb[size-1-i] = pb[i]; + pb[i] = temp; + } + } + + // Swap the byte order of primitive types + inline UByte SwapOrder(UByte v) { return v; } + inline SByte SwapOrder(SByte v) { return v; } + inline UInt16 SwapOrder(UInt16 v) { return UInt16(v>>8)|UInt16(v<<8); } + inline SInt16 SwapOrder(SInt16 v) { return SInt16((UInt16(v)>>8)|(v<<8)); } + inline UInt32 SwapOrder(UInt32 v) { return (v>>24)|((v&0x00FF0000)>>8)|((v&0x0000FF00)<<8)|(v<<24); } + inline SInt32 SwapOrder(SInt32 p) { return (SInt32)SwapOrder(UInt32(p)); } + inline UInt64 SwapOrder(UInt64 v) + { + return (v>>56) | + ((v&UInt64(0x00FF000000000000ULL))>>40) | + ((v&UInt64(0x0000FF0000000000ULL))>>24) | + ((v&UInt64(0x000000FF00000000ULL))>>8) | + ((v&UInt64(0x00000000FF000000ULL))<<8) | + ((v&UInt64(0x0000000000FF0000ULL))<<24) | + ((v&UInt64(0x000000000000FF00ULL))<<40) | + (v<<56); + } + inline SInt64 SwapOrder(SInt64 v) { return (SInt64)SwapOrder(UInt64(v)); } + inline float SwapOrder(float p) + { + union { + float p; + UInt32 v; + } u; + u.p = p; + u.v = SwapOrder(u.v); + return u.p; + } + + inline double SwapOrder(double p) + { + union { + double p; + UInt64 v; + } u; + u.p = p; + u.v = SwapOrder(u.v); + return u.p; + } + + // *** Byte-order conversion + +#if (OVR_BYTE_ORDER == OVR_LITTLE_ENDIAN) + // Little Endian to System (LE) + inline UByte LEToSystem(UByte v) { return v; } + inline SByte LEToSystem(SByte v) { return v; } + inline UInt16 LEToSystem(UInt16 v) { return v; } + inline SInt16 LEToSystem(SInt16 v) { return v; } + inline UInt32 LEToSystem(UInt32 v) { return v; } + inline SInt32 LEToSystem(SInt32 v) { return v; } + inline UInt64 LEToSystem(UInt64 v) { return v; } + inline SInt64 LEToSystem(SInt64 v) { return v; } + inline float LEToSystem(float v) { return v; } + inline double LEToSystem(double v) { return v; } + + // Big Endian to System (LE) + inline UByte BEToSystem(UByte v) { return SwapOrder(v); } + inline SByte BEToSystem(SByte v) { return SwapOrder(v); } + inline UInt16 BEToSystem(UInt16 v) { return SwapOrder(v); } + inline SInt16 BEToSystem(SInt16 v) { return SwapOrder(v); } + inline UInt32 BEToSystem(UInt32 v) { return SwapOrder(v); } + inline SInt32 BEToSystem(SInt32 v) { return SwapOrder(v); } + inline UInt64 BEToSystem(UInt64 v) { return SwapOrder(v); } + inline SInt64 BEToSystem(SInt64 v) { return SwapOrder(v); } + inline float BEToSystem(float v) { return SwapOrder(v); } + inline double BEToSystem(double v) { return SwapOrder(v); } + + // System (LE) to Little Endian + inline UByte SystemToLE(UByte v) { return v; } + inline SByte SystemToLE(SByte v) { return v; } + inline UInt16 SystemToLE(UInt16 v) { return v; } + inline SInt16 SystemToLE(SInt16 v) { return v; } + inline UInt32 SystemToLE(UInt32 v) { return v; } + inline SInt32 SystemToLE(SInt32 v) { return v; } + inline UInt64 SystemToLE(UInt64 v) { return v; } + inline SInt64 SystemToLE(SInt64 v) { return v; } + inline float SystemToLE(float v) { return v; } + inline double SystemToLE(double v) { return v; } + + // System (LE) to Big Endian + inline UByte SystemToBE(UByte v) { return SwapOrder(v); } + inline SByte SystemToBE(SByte v) { return SwapOrder(v); } + inline UInt16 SystemToBE(UInt16 v) { return SwapOrder(v); } + inline SInt16 SystemToBE(SInt16 v) { return SwapOrder(v); } + inline UInt32 SystemToBE(UInt32 v) { return SwapOrder(v); } + inline SInt32 SystemToBE(SInt32 v) { return SwapOrder(v); } + inline UInt64 SystemToBE(UInt64 v) { return SwapOrder(v); } + inline SInt64 SystemToBE(SInt64 v) { return SwapOrder(v); } + inline float SystemToBE(float v) { return SwapOrder(v); } + inline double SystemToBE(double v) { return SwapOrder(v); } + +#elif (OVR_BYTE_ORDER == OVR_BIG_ENDIAN) + // Little Endian to System (BE) + inline UByte LEToSystem(UByte v) { return SwapOrder(v); } + inline SByte LEToSystem(SByte v) { return SwapOrder(v); } + inline UInt16 LEToSystem(UInt16 v) { return SwapOrder(v); } + inline SInt16 LEToSystem(SInt16 v) { return SwapOrder(v); } + inline UInt32 LEToSystem(UInt32 v) { return SwapOrder(v); } + inline SInt32 LEToSystem(SInt32 v) { return SwapOrder(v); } + inline UInt64 LEToSystem(UInt64 v) { return SwapOrder(v); } + inline SInt64 LEToSystem(SInt64 v) { return SwapOrder(v); } + inline float LEToSystem(float v) { return SwapOrder(v); } + inline double LEToSystem(double v) { return SwapOrder(v); } + + // Big Endian to System (BE) + inline UByte BEToSystem(UByte v) { return v; } + inline SByte BEToSystem(SByte v) { return v; } + inline UInt16 BEToSystem(UInt16 v) { return v; } + inline SInt16 BEToSystem(SInt16 v) { return v; } + inline UInt32 BEToSystem(UInt32 v) { return v; } + inline SInt32 BEToSystem(SInt32 v) { return v; } + inline UInt64 BEToSystem(UInt64 v) { return v; } + inline SInt64 BEToSystem(SInt64 v) { return v; } + inline float BEToSystem(float v) { return v; } + inline double BEToSystem(double v) { return v; } + + // System (BE) to Little Endian + inline UByte SystemToLE(UByte v) { return SwapOrder(v); } + inline SByte SystemToLE(SByte v) { return SwapOrder(v); } + inline UInt16 SystemToLE(UInt16 v) { return SwapOrder(v); } + inline SInt16 SystemToLE(SInt16 v) { return SwapOrder(v); } + inline UInt32 SystemToLE(UInt32 v) { return SwapOrder(v); } + inline SInt32 SystemToLE(SInt32 v) { return SwapOrder(v); } + inline UInt64 SystemToLE(UInt64 v) { return SwapOrder(v); } + inline SInt64 SystemToLE(SInt64 v) { return SwapOrder(v); } + inline float SystemToLE(float v) { return SwapOrder(v); } + inline double SystemToLE(double v) { return SwapOrder(v); } + + // System (BE) to Big Endian + inline UByte SystemToBE(UByte v) { return v; } + inline SByte SystemToBE(SByte v) { return v; } + inline UInt16 SystemToBE(UInt16 v) { return v; } + inline SInt16 SystemToBE(SInt16 v) { return v; } + inline UInt32 SystemToBE(UInt32 v) { return v; } + inline SInt32 SystemToBE(SInt32 v) { return v; } + inline UInt64 SystemToBE(UInt64 v) { return v; } + inline SInt64 SystemToBE(SInt64 v) { return v; } + inline float SystemToBE(float v) { return v; } + inline double SystemToBE(double v) { return v; } + +#else + #error "OVR_BYTE_ORDER must be defined to OVR_LITTLE_ENDIAN or OVR_BIG_ENDIAN" +#endif + +} // namespace ByteUtil + + + +// Used primarily for hardware interfacing such as sensor reports, firmware, etc. +// Reported data is all little-endian. +inline UInt16 DecodeUInt16(const UByte* buffer) +{ + return ByteUtil::LEToSystem ( *(const UInt16*)buffer ); +} + +inline SInt16 DecodeSInt16(const UByte* buffer) +{ + return ByteUtil::LEToSystem ( *(const SInt16*)buffer ); +} + +inline UInt32 DecodeUInt32(const UByte* buffer) +{ + return ByteUtil::LEToSystem ( *(const UInt32*)buffer ); +} + +inline SInt32 DecodeSInt32(const UByte* buffer) +{ + return ByteUtil::LEToSystem ( *(const SInt32*)buffer ); +} + +inline float DecodeFloat(const UByte* buffer) +{ + union { + UInt32 U; + float F; + }; + + U = DecodeUInt32(buffer); + return F; +} + +inline void EncodeUInt16(UByte* buffer, UInt16 val) +{ + *(UInt16*)buffer = ByteUtil::SystemToLE ( val ); +} + +inline void EncodeSInt16(UByte* buffer, SInt16 val) +{ + *(SInt16*)buffer = ByteUtil::SystemToLE ( val ); +} + +inline void EncodeUInt32(UByte* buffer, UInt32 val) +{ + *(UInt32*)buffer = ByteUtil::SystemToLE ( val ); +} + +inline void EncodeSInt32(UByte* buffer, SInt32 val) +{ + *(SInt32*)buffer = ByteUtil::SystemToLE ( val ); +} + +inline void EncodeFloat(UByte* buffer, float val) +{ + union { + UInt32 U; + float F; + }; + + F = val; + EncodeUInt32(buffer, U); +} + +// Converts an 8-bit binary-coded decimal +inline SByte DecodeBCD(UByte byte) +{ + UByte digit1 = (byte >> 4) & 0x0f; + UByte digit2 = byte & 0x0f; + int decimal = digit1 * 10 + digit2; // maximum value = 99 + return (SByte)decimal; +} + + +}} // OVR::Alg + +#endif |