aboutsummaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/OVR_StereoProjection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'LibOVR/Src/OVR_StereoProjection.cpp')
-rw-r--r--LibOVR/Src/OVR_StereoProjection.cpp216
1 files changed, 216 insertions, 0 deletions
diff --git a/LibOVR/Src/OVR_StereoProjection.cpp b/LibOVR/Src/OVR_StereoProjection.cpp
new file mode 100644
index 0000000..f0ae034
--- /dev/null
+++ b/LibOVR/Src/OVR_StereoProjection.cpp
@@ -0,0 +1,216 @@
+/************************************************************************************
+
+Filename : OVR_StereoProjection.cpp
+Content : Stereo rendering functions
+Created : November 30, 2013
+Authors : Tom Fosyth
+
+Copyright : Copyright 2014 Oculus VR, LLC All Rights reserved.
+
+Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License");
+you may not use the Oculus VR Rift SDK except in compliance with the License,
+which is provided at the time of installation or download, or which
+otherwise accompanies this software in either electronic or hard copy form.
+
+You may obtain a copy of the License at
+
+http://www.oculusvr.com/licenses/LICENSE-3.2
+
+Unless required by applicable law or agreed to in writing, the Oculus VR SDK
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+*************************************************************************************/
+
+#include "OVR_StereoProjection.h"
+
+
+namespace OVR {
+
+
+ScaleAndOffset2D CreateNDCScaleAndOffsetFromFov ( FovPort tanHalfFov )
+{
+ float projXScale = 2.0f / ( tanHalfFov.LeftTan + tanHalfFov.RightTan );
+ float projXOffset = ( tanHalfFov.LeftTan - tanHalfFov.RightTan ) * projXScale * 0.5f;
+ float projYScale = 2.0f / ( tanHalfFov.UpTan + tanHalfFov.DownTan );
+ float projYOffset = ( tanHalfFov.UpTan - tanHalfFov.DownTan ) * projYScale * 0.5f;
+
+ ScaleAndOffset2D result;
+ result.Scale = Vector2f(projXScale, projYScale);
+ result.Offset = Vector2f(projXOffset, projYOffset);
+ // Hey - why is that Y.Offset negated?
+ // It's because a projection matrix transforms from world coords with Y=up,
+ // whereas this is from NDC which is Y=down.
+
+ return result;
+}
+
+
+
+Matrix4f CreateProjection( bool rightHanded, bool isOpenGL, FovPort tanHalfFov, StereoEye /*eye*/,
+ float zNear /*= 0.01f*/, float zFar /*= 10000.0f*/,
+ bool flipZ /*= false*/, bool farAtInfinity /*= false*/)
+{
+ if(!flipZ && farAtInfinity)
+ {
+ //OVR_ASSERT_M(false, "Cannot push Far Clip to Infinity when Z-order is not flipped"); Assertion disabled because this code no longer has access to LibOVRKernel assertion functionality.
+ farAtInfinity = false;
+ }
+
+ // A projection matrix is very like a scaling from NDC, so we can start with that.
+ ScaleAndOffset2D scaleAndOffset = CreateNDCScaleAndOffsetFromFov ( tanHalfFov );
+
+ float handednessScale = rightHanded ? -1.0f : 1.0f;
+
+ Matrix4f projection;
+ // Produces X result, mapping clip edges to [-w,+w]
+ projection.M[0][0] = scaleAndOffset.Scale.x;
+ projection.M[0][1] = 0.0f;
+ projection.M[0][2] = handednessScale * scaleAndOffset.Offset.x;
+ projection.M[0][3] = 0.0f;
+
+ // Produces Y result, mapping clip edges to [-w,+w]
+ // Hey - why is that YOffset negated?
+ // It's because a projection matrix transforms from world coords with Y=up,
+ // whereas this is derived from an NDC scaling, which is Y=down.
+ projection.M[1][0] = 0.0f;
+ projection.M[1][1] = scaleAndOffset.Scale.y;
+ projection.M[1][2] = handednessScale * -scaleAndOffset.Offset.y;
+ projection.M[1][3] = 0.0f;
+
+ // Produces Z-buffer result - app needs to fill this in with whatever Z range it wants.
+ // We'll just use some defaults for now.
+ projection.M[2][0] = 0.0f;
+ projection.M[2][1] = 0.0f;
+
+ if (farAtInfinity)
+ {
+ projection.M[2][2] = 0.0f;
+ projection.M[2][3] = zNear;
+ }
+ else
+ {
+ if (isOpenGL)
+ {
+ projection.M[2][2] = -handednessScale * (flipZ ? 1.0f : -1.0f) * (zNear + zFar) / (zFar - zNear);
+ projection.M[2][3] = -2.0f * ((flipZ ? -zFar : zFar) * zNear) / (zFar - zNear);
+ }
+ else
+ {
+ projection.M[2][2] = -handednessScale * (flipZ ? -zNear : zFar) / (zNear - zFar);
+ projection.M[2][3] = ((flipZ ? -zFar : zFar) * zNear) / (zNear - zFar);
+ }
+ }
+
+ // Produces W result (= Z in)
+ projection.M[3][0] = 0.0f;
+ projection.M[3][1] = 0.0f;
+ projection.M[3][2] = handednessScale;
+ projection.M[3][3] = 0.0f;
+
+ return projection;
+}
+
+
+Matrix4f CreateOrthoSubProjection ( bool /*rightHanded*/, StereoEye eyeType,
+ float tanHalfFovX, float tanHalfFovY,
+ float unitsX, float unitsY,
+ float distanceFromCamera, float interpupillaryDistance,
+ Matrix4f const &projection,
+ float zNear /*= 0.0f*/, float zFar /*= 0.0f*/,
+ bool flipZ /*= false*/, bool farAtInfinity /*= false*/)
+{
+ if(!flipZ && farAtInfinity)
+ {
+ //OVR_ASSERT_M(false, "Cannot push Far Clip to Infinity when Z-order is not flipped"); Assertion disabled because this code no longer has access to LibOVRKernel assertion functionality.
+ farAtInfinity = false;
+ }
+
+ float orthoHorizontalOffset = interpupillaryDistance * 0.5f / distanceFromCamera;
+ switch ( eyeType )
+ {
+ case StereoEye_Center:
+ orthoHorizontalOffset = 0.0f;
+ break;
+ case StereoEye_Left:
+ break;
+ case StereoEye_Right:
+ orthoHorizontalOffset = -orthoHorizontalOffset;
+ break;
+ default:
+ break;
+ }
+
+ // Current projection maps real-world vector (x,y,1) to the RT.
+ // We want to find the projection that maps the range [-FovPixels/2,FovPixels/2] to
+ // the physical [-orthoHalfFov,orthoHalfFov]
+ // Note moving the offset from M[0][2]+M[1][2] to M[0][3]+M[1][3] - this means
+ // we don't have to feed in Z=1 all the time.
+ // The horizontal offset math is a little hinky because the destination is
+ // actually [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]
+ // So we need to first map [-FovPixels/2,FovPixels/2] to
+ // [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]:
+ // x1 = x0 * orthoHalfFov/(FovPixels/2) + orthoHorizontalOffset;
+ // = x0 * 2*orthoHalfFov/FovPixels + orthoHorizontalOffset;
+ // But then we need the sam mapping as the existing projection matrix, i.e.
+ // x2 = x1 * Projection.M[0][0] + Projection.M[0][2];
+ // = x0 * (2*orthoHalfFov/FovPixels + orthoHorizontalOffset) * Projection.M[0][0] + Projection.M[0][2];
+ // = x0 * Projection.M[0][0]*2*orthoHalfFov/FovPixels +
+ // orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2];
+ // So in the new projection matrix we need to scale by Projection.M[0][0]*2*orthoHalfFov/FovPixels and
+ // offset by orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2].
+
+ float orthoScaleX = 2.0f * tanHalfFovX / unitsX;
+ float orthoScaleY = 2.0f * tanHalfFovY / unitsY;
+ Matrix4f ortho;
+ ortho.M[0][0] = projection.M[0][0] * orthoScaleX;
+ ortho.M[0][1] = 0.0f;
+ ortho.M[0][2] = 0.0f;
+ ortho.M[0][3] = -projection.M[0][2] + ( orthoHorizontalOffset * projection.M[0][0] );
+
+ ortho.M[1][0] = 0.0f;
+ ortho.M[1][1] = -projection.M[1][1] * orthoScaleY; // Note sign flip (text rendering uses Y=down).
+ ortho.M[1][2] = 0.0f;
+ ortho.M[1][3] = -projection.M[1][2];
+
+ const float zDiff = zNear - zFar;
+ if (fabsf(zDiff) < 0.001f)
+ {
+ ortho.M[2][0] = 0.0f;
+ ortho.M[2][1] = 0.0f;
+ ortho.M[2][2] = 0.0f;
+ ortho.M[2][3] = flipZ ? zNear : zFar;
+ }
+ else
+ {
+ ortho.M[2][0] = 0.0f;
+ ortho.M[2][1] = 0.0f;
+
+ if(farAtInfinity)
+ {
+ ortho.M[2][2] = 0.0f;
+ ortho.M[2][3] = zNear;
+ }
+ else if (zDiff != 0.0f)
+ {
+ ortho.M[2][2] = (flipZ ? zNear : zFar) / zDiff;
+ ortho.M[2][3] = ((flipZ ? -zFar : zFar) * zNear) / zDiff;
+ }
+ }
+
+ // No perspective correction for ortho.
+ ortho.M[3][0] = 0.0f;
+ ortho.M[3][1] = 0.0f;
+ ortho.M[3][2] = 0.0f;
+ ortho.M[3][3] = 1.0f;
+
+ return ortho;
+}
+
+
+
+} //namespace OVR
+
+