aboutsummaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/CAPI/CAPI_HMDState.cpp
blob: fede0199dc3e2baa49a44d499db92570c76f3718 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
/************************************************************************************

Filename    :   CAPI_HMDState.cpp
Content     :   State associated with a single HMD
Created     :   January 24, 2014
Authors     :   Michael Antonov

Copyright   :   Copyright 2014 Oculus VR, LLC All Rights reserved.

Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); 
you may not use the Oculus VR Rift SDK except in compliance with the License, 
which is provided at the time of installation or download, or which 
otherwise accompanies this software in either electronic or hard copy form.

You may obtain a copy of the License at

http://www.oculusvr.com/licenses/LICENSE-3.2 

Unless required by applicable law or agreed to in writing, the Oculus VR SDK 
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

************************************************************************************/

#include "CAPI_HMDState.h"
#include "../OVR_Profile.h"
#include "../Service/Service_NetClient.h"

#if !defined(HEADLESS_APP)
#ifdef OVR_OS_WIN32
    #include "../Displays/OVR_Win32_ShimFunctions.h"

    // For auto-detection of window handle for direct mode:
    #include <OVR_CAPI_D3D.h>
    #include <GL/CAPI_GLE.h>
    #include <OVR_CAPI_GL.h>

#elif defined(OVR_OS_LINUX)

    #include "../Displays/OVR_Linux_SDKWindow.h" // For screen rotation

#endif
#endif /* !defined(HEADLESS_APP) */

#include "Tracing/Tracing.h"


namespace OVR { namespace CAPI {


// Accessed via HMDState::EnumerateHMDStateList()
static OVR::Lock hmdStateListLock;
static OVR::List<HMDState> hmdStateList; // List of all created HMDStates.


//-------------------------------------------------------------------------------------
// ***** HMDState

HMDState::HMDState(HMDInfo const & hmdInfo,
                   Profile* profile,
                   Service::HMDNetworkInfo const * netInfo,
                   Service::NetClient* client) :
    TimewarpTimer(),
    RenderTimer(),
    RenderIMUTimeSeconds(0.),
    pProfile(profile),
    pHmdDesc(0),
    pWindow(0),
    pClient(client),
    NetId(InvalidVirtualHmdId),
    NetInfo(),
    OurHMDInfo(hmdInfo),
    pLastError(nullptr),
    EnabledHmdCaps(0),
    EnabledServiceHmdCaps(0),
    CombinedHmdReader(),
    TheTrackingStateReader(),
    TheLatencyTestStateReader(),
    LatencyTestActive(false),
  //LatencyTestDrawColor(),
    LatencyTest2Active(false),
  //LatencyTest2DrawColor(),
    ScreenLatencyTracker(),
    RenderState(),
    pRenderer(),
#if !defined(HEADLESS_APP)
    pHSWDisplay(),
#endif /* !defined(HEADLESS_APP) */
  //LastGetStringValue(),
    RenderingConfigured(false),
    BeginFrameCalled(false),
    BeginFrameThreadId(),
    BeginFrameIndex(0),
    RenderAPIThreadChecker(),
    BeginFrameTimingCalled(false)
{
    if (netInfo)
    {
        NetId = netInfo->NetId;
        NetInfo = *netInfo;
    }

    // Hook up the app timing lockless updater
    RenderTimer.SetUpdater(TimewarpTimer.GetUpdater());

    // TBD: We should probably be looking up the default profile for the given
    // device type + user if profile == 0.    
    pLastError = 0;

    RenderState.OurHMDInfo = OurHMDInfo;

    UpdateRenderProfile(profile);

    OVR_ASSERT(!pHmdDesc);
    pHmdDesc         = (ovrHmdDesc*)OVR_ALLOC(sizeof(ovrHmdDesc));
    *pHmdDesc        = RenderState.GetDesc();
    pHmdDesc->Handle = this;

    RenderState.ClearColor[0] = 0.0f;
    RenderState.ClearColor[1] = 0.0f;
    RenderState.ClearColor[2] = 0.0f;
    RenderState.ClearColor[3] = 0.0f;
    RenderState.EnabledHmdCaps = 0;

    if (!TimewarpTimer.Initialize(&RenderState, &ScreenLatencyTracker))
    {
        OVR_ASSERT(false);
    }

    /*
    LatencyTestDrawColor[0] = 0;
    LatencyTestDrawColor[1] = 0;
    LatencyTestDrawColor[2] = 0;
    */

    RenderingConfigured    = false;
    BeginFrameCalled       = false;
    BeginFrameThreadId     = 0;
    BeginFrameTimingCalled = false;

#if !defined(HEADLESS_APP)
    // Construct the HSWDisplay. We will later reconstruct it with a specific ovrRenderAPI type if the application starts using SDK-based rendering.
    if(!pHSWDisplay)
    {
        pHSWDisplay = *OVR::CAPI::HSWDisplay::Factory(ovrRenderAPI_None, pHmdDesc, RenderState);
    }
#endif /* !defined(HEADLESS_APP) */

    RenderIMUTimeSeconds = 0.;

    hmdStateListLock.DoLock();
    hmdStateList.PushBack(this);
    hmdStateListLock.Unlock();
}

HMDState::~HMDState()
{
    hmdStateListLock.DoLock();
    hmdStateList.Remove(this);
    hmdStateListLock.Unlock();

    if (pClient)
    {
        pClient->Hmd_Release(NetId);
        pClient = 0;
    }

    ConfigureRendering(0,0,0,0);

    if (pHmdDesc)
    {
        OVR_FREE(pHmdDesc);
        pHmdDesc = nullptr;
    }
}

bool HMDState::InitializeSharedState()
{
    if (!CombinedHmdReader.Open(NetInfo.SharedMemoryName.Hmd.ToCStr()) ||
        !CameraReader.Open(NetInfo.SharedMemoryName.Camera.ToCStr()))
    {
        return false;
    }

    TheTrackingStateReader.SetUpdaters(CombinedHmdReader.Get(), CameraReader.Get());
    TheLatencyTestStateReader.SetUpdater(CombinedHmdReader.Get());


    return true;
}

static Vector3f GetNeckModelFromProfile(Profile* profile)
{
    OVR_ASSERT(profile);

    float neckeye[2] = { OVR_DEFAULT_NECK_TO_EYE_HORIZONTAL, OVR_DEFAULT_NECK_TO_EYE_VERTICAL };
    profile->GetFloatValues(OVR_KEY_NECK_TO_EYE_DISTANCE, neckeye, 2);

    // Make sure these are vaguely sensible values.
    //OVR_ASSERT((neckeye[0] > 0.05f) && (neckeye[0] < 0.5f));
    //OVR_ASSERT((neckeye[1] > 0.05f) && (neckeye[1] < 0.5f));

    // Named for clarity
    float NeckToEyeHorizontal = neckeye[0];
    float NeckToEyeVertical = neckeye[1];

    // Store the neck model
    return Vector3f(0.0, NeckToEyeVertical, -NeckToEyeHorizontal);
}

static float GetCenterPupilDepthFromRenderInfo(HmdRenderInfo* hmdRenderInfo)
{
    OVR_ASSERT(hmdRenderInfo);

    // Find the distance from the center of the screen to the "center eye"
    // This center eye is used by systems like rendering & audio to represent the player,
    // and they will handle the offsets needed from there to each actual eye.

    // HACK HACK HACK
    // We know for DK1 the screen->lens surface distance is roughly 0.049f, and that the faceplate->lens is 0.02357f.
    // We're going to assume(!!!!) that all HMDs have the same screen->faceplate distance.
    // Crystal Cove was measured to be roughly 0.025 screen->faceplate which agrees with this assumption.
    // TODO: do this properly!  Update:  Measured this at 0.02733 with a CC prototype, CES era (PT7), on 2/19/14 -Steve
    float screenCenterToMidplate = 0.02733f;
    float centerEyeRelief = hmdRenderInfo->GetEyeCenter().ReliefInMeters;
    float CenterPupilDepth = screenCenterToMidplate + hmdRenderInfo->LensSurfaceToMidplateInMeters + centerEyeRelief;

    return CenterPupilDepth;
}

void HMDState::UpdateRenderProfile(Profile* profile)
{
    // Apply the given profile to generate a render context
    RenderState.OurProfileRenderInfo = GenerateProfileRenderInfoFromProfile(RenderState.OurHMDInfo, profile);
    RenderState.RenderInfo = GenerateHmdRenderInfoFromHmdInfo(RenderState.OurHMDInfo, RenderState.OurProfileRenderInfo);

    RenderState.Distortion[0] = CalculateDistortionRenderDesc(StereoEye_Left, RenderState.RenderInfo, 0);
    RenderState.Distortion[1] = CalculateDistortionRenderDesc(StereoEye_Right, RenderState.RenderInfo, 0);

    if (pClient)
    {
        // Center pupil depth
        float centerPupilDepth = GetCenterPupilDepthFromRenderInfo(&RenderState.RenderInfo);
        pClient->SetNumberValue(GetNetId(), "CenterPupilDepth", centerPupilDepth);

        // Neck model
        Vector3f neckModel = GetNeckModelFromProfile(profile);
        double neckModelArray[3] = {
            neckModel.x,
            neckModel.y,
            neckModel.z
        };
        pClient->SetNumberValues(GetNetId(), "NeckModelVector3f", neckModelArray, 3);

        // Camera position

        // OVR_KEY_CAMERA_POSITION is actually the *inverse* of a camera position.
        Posed centeredFromWorld;

        double values[7];
        if (profile->GetDoubleValues(OVR_KEY_CAMERA_POSITION, values, 7) == 7)
        {
            centeredFromWorld = Posed::FromArray(values);
        }
        else
        {
            centeredFromWorld = TheTrackingStateReader.GetDefaultCenteredFromWorld();
        }

        // ComputeCenteredFromWorld wants a worldFromCpf pose, so invert it.
        // FIXME: The stored centeredFromWorld doesn't have a neck model offset applied, but probably should.
        TheTrackingStateReader.ComputeCenteredFromWorld(centeredFromWorld.Inverted(), Vector3d(0, 0, 0));
    }
}

HMDState* HMDState::CreateHMDState(NetClient* client, const HMDNetworkInfo& netInfo)
{
    // HMDState works through a handle to service HMD....
    HMDInfo hinfo;
    if (!client->Hmd_GetHmdInfo(netInfo.NetId, &hinfo))
    {
        OVR_DEBUG_LOG(("[HMDState] Unable to get HMD info"));
        return nullptr;
    }

#if !defined(HEADLESS_APP)
#ifdef OVR_OS_WIN32
    OVR_DEBUG_LOG(("[HMDState] Setting up display shim"));

    // Initialize the display shim before reporting the display to the user code
    // so that this will happen before the D3D display object is created.
    Win32::DisplayShim::GetInstance().Update(&hinfo.ShimInfo);
#endif
#endif /* !defined(HEADLESS_APP) */

    Ptr<Profile> pDefaultProfile = *ProfileManager::GetInstance()->GetDefaultUserProfile(&hinfo);
    OVR_DEBUG_LOG(("[HMDState] Using profile %s", pDefaultProfile->GetValue(OVR_KEY_USER)));

    HMDState* hmds = new HMDState(hinfo, pDefaultProfile, &netInfo, client);

    if (!hmds->InitializeSharedState())
    {
        delete hmds;
        return nullptr;
    }

    return hmds;
}

HMDState* HMDState::CreateDebugHMDState(ovrHmdType hmdType)
{
    HmdTypeEnum t = HmdType_None;
    if (hmdType == ovrHmd_DK1)
        t = HmdType_DK1;    
    else if (hmdType == ovrHmd_DK2)
        t = HmdType_DK2;

    // FIXME: This does not actually grab the right user..
    Ptr<Profile> pDefaultProfile = *ProfileManager::GetInstance()->GetDefaultProfile(t);
    
    return new HMDState(CreateDebugHMDInfo(t), pDefaultProfile);
}

// Enumerate each open HMD
unsigned HMDState::EnumerateHMDStateList(bool (*callback)(const HMDState *state))
{
    unsigned count = 0;
    hmdStateListLock.DoLock();
    for (const HMDState *hmds = hmdStateList.GetFirst(); !hmdStateList.IsNull(hmds); hmds = hmdStateList.GetNext(hmds))
    {
        if (callback && !callback(hmds))
            break;
        ++count;
    }
    hmdStateListLock.Unlock();
    return count;
}

//-------------------------------------------------------------------------------------
// *** Sensor 

bool HMDState::ConfigureTracking(unsigned supportedCaps, unsigned requiredCaps)
{
    return pClient ? pClient->Hmd_ConfigureTracking(NetId, supportedCaps, requiredCaps) : true;
}

void HMDState::ResetTracking(bool visionReset)
{
    if (pClient) pClient->Hmd_ResetTracking(NetId, visionReset);
}        

// Re-center the orientation.
void HMDState::RecenterPose()
{
    float hnm[3];
    getFloatArray("NeckModelVector3f", hnm, 3);
    TheTrackingStateReader.RecenterPose(Vector3d(hnm[0], hnm[1], hnm[2]));
}

// Returns prediction for time.
ovrTrackingState HMDState::PredictedTrackingState(double absTime, void*)
{
    Vision::TrackingState ss;
    TheTrackingStateReader.GetTrackingStateAtTime(absTime, ss);

    // Zero out the status flags
    if (!pClient || !pClient->IsConnected(false, false))
    {
        ss.StatusFlags = 0;
    }

#ifdef OVR_OS_WIN32
    // Set up display code for Windows
    Win32::DisplayShim::GetInstance().Active = (ss.StatusFlags & ovrStatus_HmdConnected) != 0;
#endif


    return ss;
}

void HMDState::SetEnabledHmdCaps(unsigned hmdCaps)
{
    if (OurHMDInfo.HmdType < HmdType_DK2)
    {
        // disable low persistence and pentile.
        hmdCaps &= ~ovrHmdCap_LowPersistence;

        // disable dynamic prediction using the internal latency tester
        hmdCaps &= ~ovrHmdCap_DynamicPrediction;
    }

    if ((EnabledHmdCaps ^ hmdCaps) & ovrHmdCap_NoMirrorToWindow)
    {
#if !defined(HEADLESS_APP)
#ifdef OVR_OS_WIN32
        Win32::DisplayShim::GetInstance().UseMirroring = (hmdCaps & ovrHmdCap_NoMirrorToWindow)  ?
                                                         false : true;
        if (pWindow)
        {   // Force window repaint so that stale mirrored image doesn't persist.
            ::InvalidateRect((HWND)pWindow, 0, true);
        }
#endif
#endif /* !defined(HEADLESS_APP) */
    }

    // TBD: Should this include be only the rendering flags? Otherwise, bits that failed
    //      modification in Hmd_SetEnabledCaps may mis-match...
    EnabledHmdCaps             = hmdCaps & ovrHmdCap_Writable_Mask;
    RenderState.EnabledHmdCaps = EnabledHmdCaps;


    // If any of the modifiable service caps changed, call on the service.
    unsigned prevServiceCaps = EnabledServiceHmdCaps & ovrHmdCap_Writable_Mask;
    unsigned newServiceCaps  = hmdCaps & ovrHmdCap_Writable_Mask & ovrHmdCap_Service_Mask;

    if (prevServiceCaps ^ newServiceCaps)
    {
        EnabledServiceHmdCaps = pClient ? pClient->Hmd_SetEnabledCaps(NetId, newServiceCaps)
                                : newServiceCaps;
    }
}


unsigned HMDState::SetEnabledHmdCaps()
{
    unsigned serviceCaps = pClient ? pClient->Hmd_GetEnabledCaps(NetId) :
                                      EnabledServiceHmdCaps;
    
    return serviceCaps & ((~ovrHmdCap_Service_Mask) | EnabledHmdCaps);    
}


//-------------------------------------------------------------------------------------
// ***** Property Access

// FIXME: Remove the EGetBoolValue stuff and do it with a "Server:" prefix, so we do not
// need to keep a white-list of keys.  This is also way cool because it allows us to add
// new settings keys from outside CAPI that can modify internal server data.

bool HMDState::getBoolValue(const char* propertyName, bool defaultVal)
{
    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::EGetBoolValue, propertyName))
    {
       return NetClient::GetInstance()->GetBoolValue(GetNetId(), propertyName, defaultVal);
    }
    else if (pProfile)
    {
        return pProfile->GetBoolValue(propertyName, defaultVal);
    }
    return defaultVal;
}

bool HMDState::setBoolValue(const char* propertyName, bool value)
{
    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::ESetBoolValue, propertyName))
    {
        return NetClient::GetInstance()->SetBoolValue(GetNetId(), propertyName, value);
    }

    return false;
}

int HMDState::getIntValue(const char* propertyName, int defaultVal)
{
    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::EGetIntValue, propertyName))
    {
        return NetClient::GetInstance()->GetIntValue(GetNetId(), propertyName, defaultVal);
    }
    else if (pProfile)
    {
        return pProfile->GetIntValue(propertyName, defaultVal);
    }
    return defaultVal;
}

bool HMDState::setIntValue(const char* propertyName, int value)
{
    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::ESetIntValue, propertyName))
    {
        return NetClient::GetInstance()->SetIntValue(GetNetId(), propertyName, value);
    }

    return false;
}

float HMDState::getFloatValue(const char* propertyName, float defaultVal)
{
    if (OVR_strcmp(propertyName, "LensSeparation") == 0)
    {
        return OurHMDInfo.LensSeparationInMeters;
    }
    else if (OVR_strcmp(propertyName, "VsyncToNextVsync") == 0) 
    {
        return OurHMDInfo.Shutter.VsyncToNextVsync;
    }
    else if (OVR_strcmp(propertyName, "PixelPersistence") == 0) 
    {
        return OurHMDInfo.Shutter.PixelPersistence;
    }
    else if (NetSessionCommon::IsServiceProperty(NetSessionCommon::EGetNumberValue, propertyName))
    {
       return (float)NetClient::GetInstance()->GetNumberValue(GetNetId(), propertyName, defaultVal);
    }
    else if (pProfile)
    {
        return pProfile->GetFloatValue(propertyName, defaultVal);
    }

    return defaultVal;
}

bool HMDState::setFloatValue(const char* propertyName, float value)
{
    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::ESetNumberValue, propertyName))
    {
        return NetClient::GetInstance()->SetNumberValue(GetNetId(), propertyName, value);
    }

    return false;
}

static unsigned CopyFloatArrayWithLimit(float dest[], unsigned destSize,
                                        float source[], unsigned sourceSize)
{
    unsigned count = Alg::Min(destSize, sourceSize);
    for (unsigned i = 0; i < count; i++)
        dest[i] = source[i];
    return count;
}

unsigned HMDState::getFloatArray(const char* propertyName, float values[], unsigned arraySize)
{
    if (arraySize)
    {
        if (OVR_strcmp(propertyName, "ScreenSize") == 0)
        {
            float data[2] = { OurHMDInfo.ScreenSizeInMeters.w, OurHMDInfo.ScreenSizeInMeters.h };

            return CopyFloatArrayWithLimit(values, arraySize, data, 2);
        }
        else if (OVR_strcmp(propertyName, "DistortionClearColor") == 0)
        {
            return CopyFloatArrayWithLimit(values, arraySize, RenderState.ClearColor, 4);
        }
        else if (OVR_strcmp(propertyName, "DK2Latency") == 0)
        {
            if (OurHMDInfo.HmdType < HmdType_DK2)
            {
                return 0;
            }

            OutputLatencyTimings timings;
            ScreenLatencyTracker.GetLatencyTimings(timings);

            if (arraySize > 0)
            {
                switch (arraySize)
                {
                default: values[4] = (float)timings.ErrorTimewarp;      // Fall-thru
                case 4:  values[3] = (float)timings.ErrorRender;        // Fall-thru
                case 3:  values[2] = (float)timings.LatencyPostPresent; // Fall-thru
                case 2:  values[1] = (float)timings.LatencyTimewarp;    // Fall-thru
                case 1:  values[0] = (float)timings.LatencyRender;
                }
            }

            return arraySize > 5 ? 5 : arraySize;
        }
        else if (OVR_strcmp(propertyName, "NeckModelVector3f") == 0)
        {
            // Query the service to grab the HNM.
            double hnm[3] = {};
            int count = NetClient::GetInstance()->GetNumberValues(GetNetId(), propertyName, hnm, (int)arraySize);

            // If the service is unavailable or returns zero data,
            if (count < 3 ||
                (hnm[0] == 0.0 && hnm[1] == 0.0 && hnm[2] == 0.0))
            {
                // These are the default values used if the server does not return any data, due to not
                // being reachable or other errors.
                OVR_ASSERT(pProfile.GetPtr());
                if (pProfile.GetPtr())
                {
                    Vector3f neckModel = GetNeckModelFromProfile(pProfile);
                    hnm[0] = neckModel.x;
                    hnm[1] = neckModel.y;
                    hnm[2] = neckModel.z;
                }
            }

            for (unsigned i = 0; i < 3 && i < arraySize; ++i)
            {
                values[i] = (float)hnm[i];
            }

            return arraySize > 3 ? 3 : arraySize;
        }
        else if (NetSessionCommon::IsServiceProperty(NetSessionCommon::EGetNumberValues, propertyName))
        {
            // Convert floats to doubles
            double* da = new double[arraySize];
            for (int i = 0; i < (int)arraySize; ++i)
            {
                da[i] = values[i];
            }

            int count = NetClient::GetInstance()->GetNumberValues(GetNetId(), propertyName, da, (int)arraySize);

            for (int i = 0; i < count; ++i)
            {
                values[i] = (float)da[i];
            }

            delete[] da;

            return count;
        }
        else if (pProfile)
        {        
            // TBD: Not quite right. Should update profile interface, so that
            //      we can return 0 in all conditions if property doesn't exist.
        
            return pProfile->GetFloatValues(propertyName, values, arraySize);
        }
    }

    return 0;
}

bool HMDState::setFloatArray(const char* propertyName, float values[], unsigned arraySize)
{
    if (!arraySize)
    {
        return false;
    }
    
    if (OVR_strcmp(propertyName, "DistortionClearColor") == 0)
    {
        CopyFloatArrayWithLimit(RenderState.ClearColor, 4, values, arraySize);
        return true;
    }

    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::ESetNumberValues, propertyName))
    {
        double* da = new double[arraySize];
        for (int i = 0; i < (int)arraySize; ++i)
        {
            da[i] = values[i];
        }

        bool result = NetClient::GetInstance()->SetNumberValues(GetNetId(), propertyName, da, arraySize);

        delete[] da;

        return result;
    }

    return false;
}

const char* HMDState::getString(const char* propertyName, const char* defaultVal)
{
    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::EGetStringValue, propertyName))
    {
        return NetClient::GetInstance()->GetStringValue(GetNetId(), propertyName, defaultVal);
    }

    if (pProfile)
    {
        LastGetStringValue[0] = 0;
        if (pProfile->GetValue(propertyName, LastGetStringValue, sizeof(LastGetStringValue)))
        {
            return LastGetStringValue;
        }
    }

    return defaultVal;
}

bool HMDState::setString(const char* propertyName, const char* value)
{
    if (NetSessionCommon::IsServiceProperty(NetSessionCommon::ESetStringValue, propertyName))
    {
        return NetClient::GetInstance()->SetStringValue(GetNetId(), propertyName, value);
    }

    return false;
}


//-------------------------------------------------------------------------------------
// *** Latency Test

bool HMDState::ProcessLatencyTest(unsigned char rgbColorOut[3])
{    
    return NetClient::GetInstance()->LatencyUtil_ProcessInputs(Timer::GetSeconds(), rgbColorOut);
}


//-------------------------------------------------------------------------------------
// *** Timewarp

AppTiming HMDState::GetAppTiming(uint32_t frameIndex)
{
    // Get prediction time for the requested frame index
    AppTiming timing;
    const bool VsyncOn = ((RenderState.EnabledHmdCaps & ovrHmdCap_NoVSync) == 0);
    RenderTimer.GetAppTimingForIndex(timing, VsyncOn, frameIndex);

    // Update the predicted scanout time for this frame index
    TimingHistory.SetScanoutTimeForFrame(frameIndex, timing.ScanoutStartTime);

    return timing;
}

ovrFrameTiming HMDState::GetFrameTiming(uint32_t frameIndex)
{
    AppTiming timing = GetAppTiming(frameIndex);

    // Calculate eye render times based on shutter type
    double eyePhotonsTimes[2];
    CalculateEyeRenderTimes(timing.VisibleMidpointTime, timing.FrameInterval,
                            RenderState.RenderInfo.Shutter.Type,
                            eyePhotonsTimes[0], eyePhotonsTimes[1]);

    RenderIMUTimeSeconds = Timer::GetSeconds(); // RenderPrediction.RawSensorData.TimeInSeconds;

    // Construct a ovrFrameTiming object from the base app timing information
    ovrFrameTiming result;
    result.DeltaSeconds           = (float)timing.FrameInterval;
    result.EyeScanoutSeconds[0]   = eyePhotonsTimes[0];
    result.EyeScanoutSeconds[1]   = eyePhotonsTimes[1];
    result.ScanoutMidpointSeconds = timing.VisibleMidpointTime;
    result.ThisFrameSeconds       = timing.ScanoutStartTime - timing.FrameInterval;
    result.NextFrameSeconds       = timing.ScanoutStartTime;
    // Deprecated: This should be queried after render work completes.  Please delete me from CAPI.
    result.TimewarpPointSeconds   = 0.;
    return result;
}

ovrTrackingState HMDState::GetMidpointPredictionTracking(uint32_t frameIndex)
{
    AppTiming timing = GetAppTiming(frameIndex);
    RenderIMUTimeSeconds = Timer::GetSeconds(); // RenderPrediction.RawSensorData.TimeInSeconds;
    return PredictedTrackingState(timing.VisibleMidpointTime);
}

Posef HMDState::GetEyePredictionPose(ovrEyeType eye)
{
    // Note that this function does not get the frame index parameter and depends
    // on whichever value is passed into the BeginFrame() function.
    ovrTrackingState ts = GetMidpointPredictionTracking(BeginFrameIndex);
    TraceTrackingState(ts);
    Posef const & hmdPose = ts.HeadPose.ThePose;

    // Currently HmdToEyeViewOffset is only a 3D vector
    // (Negate HmdToEyeViewOffset because offset is a view matrix offset and not a camera offset)
    if (eye == ovrEye_Left)
    {
        return Posef(hmdPose.Rotation, ((Posef)hmdPose).Apply(-((Vector3f)RenderState.EyeRenderDesc[0].HmdToEyeViewOffset)));
    }
    else
    {
        return Posef(hmdPose.Rotation, ((Posef)hmdPose).Apply(-((Vector3f)RenderState.EyeRenderDesc[1].HmdToEyeViewOffset)));
    }
}

void HMDState::endFrameRenderTiming()
{
    TimewarpTimer.SetLastPresentTime(); // Record approximate vsync time

    bool dk2LatencyTest = (EnabledHmdCaps & ovrHmdCap_DynamicPrediction) != 0;
    if (dk2LatencyTest)
    {
        Util::FrameTimeRecordSet recordSet;
        TheLatencyTestStateReader.GetRecordSet(recordSet);

        FrameLatencyData data;
        data.DrawColor                    = LatencyTest2DrawColor[0];
        data.RenderIMUTime                = RenderIMUTimeSeconds;
        data.RenderPredictedScanoutTime   = TimingHistory.LookupScanoutTime(BeginFrameIndex);
        data.PresentTime                  = TimewarpTimer.GetLatencyTesterPresentTime();
        data.TimewarpPredictedScanoutTime = TimewarpTimer.GetTimewarpTiming()->ScanoutTime;
        data.TimewarpIMUTime              = TimewarpTimer.GetTimewarpIMUTime();

        //OVR_ASSERT(data.TimewarpIMUTime == 0. || data.TimewarpIMUTime >= data.RenderIMUTime);

        ScreenLatencyTracker.SaveDrawColor(data);
        ScreenLatencyTracker.MatchRecord(recordSet);
    }
}

void HMDState::getTimewarpStartEnd(ovrEyeType eyeId, double timewarpStartEnd[2])
{
    // Get eye start/end scanout times
    TimewarpTiming const* timewarpTiming = TimewarpTimer.GetTimewarpTiming();

    for (int i = 0; i < 2; ++i)
    {
        timewarpStartEnd[i] = timewarpTiming->EyeStartEndTimes[eyeId][i];
    }
}

void HMDState::GetTimewarpMatricesEx(ovrEyeType eyeId,
                                     ovrPosef renderPose, 
                                     bool calcPosition, const ovrVector3f hmdToEyeViewOffset[2], 
                                     ovrMatrix4f twmOut[2], double debugTimingOffsetInSeconds)
{
    // Get timewarp start/end timing
    double timewarpStartEnd[2];
    getTimewarpStartEnd(eyeId, timewarpStartEnd);

    //TPH, to vary timing, to allow developers to debug, to shunt the predicted time forward 
    //and back, and see if the SDK is truly delivering the correct time.  Also to allow
    //illustration of the detrimental effects when this is not done right. 
    timewarpStartEnd[0] += debugTimingOffsetInSeconds;
    timewarpStartEnd[1] += debugTimingOffsetInSeconds;

    ovrTrackingState startState = PredictedTrackingState(timewarpStartEnd[0]);
    ovrTrackingState endState   = PredictedTrackingState(timewarpStartEnd[1]);

    ovrPosef startHmdPose = startState.HeadPose.ThePose;
    ovrPosef endHmdPose   = endState.HeadPose.ThePose;
    Vector3f eyeOffset    = Vector3f(0.0f, 0.0f, 0.0f);
    Matrix4f timewarpStart, timewarpEnd;
    if (calcPosition)
    {
        if (!hmdToEyeViewOffset)
        {
            OVR_ASSERT(false);
            LogError("{ERR-102} [FrameTime] No hmdToEyeViewOffset provided even though calcPosition is true.");

            // disable position to avoid positional issues
            renderPose.Position = Vector3f::Zero();
            startHmdPose.Position = Vector3f::Zero();
            endHmdPose.Position = Vector3f::Zero();
        }
        else if (hmdToEyeViewOffset[eyeId].x >= MATH_FLOAT_MAXVALUE)
        {
            OVR_ASSERT(false);
            LogError("{ERR-103} [FrameTime] Invalid hmdToEyeViewOffset provided by client.");

            // disable position to avoid positional issues
            renderPose.Position = Vector3f::Zero();
            startHmdPose.Position = Vector3f::Zero();
            endHmdPose.Position = Vector3f::Zero();
        }
        else
        {
            // Currently HmdToEyeViewOffset is only a 3D vector
            // (Negate HmdToEyeViewOffset because offset is a view matrix offset and not a camera offset)
            eyeOffset = ((Posef)startHmdPose).Apply(-((Vector3f)hmdToEyeViewOffset[eyeId]));
        }

        Posef fromEye = Posef(renderPose).Inverted();   // because we need the view matrix, not the camera matrix
        CalculatePositionalTimewarpMatrix(fromEye, startHmdPose, eyeOffset, timewarpStart);
        CalculatePositionalTimewarpMatrix(fromEye,   endHmdPose, eyeOffset, timewarpEnd);
    }
    else
    {
        Quatf fromEye = Quatf(renderPose.Orientation).Inverted();   // because we need the view matrix, not the camera matrix
        CalculateOrientationTimewarpMatrix(fromEye, startHmdPose.Orientation, timewarpStart);
        CalculateOrientationTimewarpMatrix(fromEye,   endHmdPose.Orientation, timewarpEnd);
    }
    twmOut[0] = timewarpStart;
    twmOut[1] = timewarpEnd;
}

void HMDState::GetTimewarpMatrices(ovrEyeType eyeId, ovrPosef renderPose,
                                   ovrMatrix4f twmOut[2])
{
    // Get timewarp start/end timing
    double timewarpStartEnd[2];
    getTimewarpStartEnd(eyeId, timewarpStartEnd);

    ovrTrackingState startState = PredictedTrackingState(timewarpStartEnd[0]);
    ovrTrackingState endState   = PredictedTrackingState(timewarpStartEnd[1]);

    Quatf quatFromEye = Quatf(renderPose.Orientation);
    quatFromEye.Invert();   // because we need the view matrix, not the camera matrix

    Matrix4f timewarpStart, timewarpEnd;
    CalculateOrientationTimewarpMatrix(
        quatFromEye, startState.HeadPose.ThePose.Orientation, timewarpStart);
    CalculateOrientationTimewarpMatrix(
        quatFromEye, endState.HeadPose.ThePose.Orientation, timewarpEnd);

    twmOut[0] = timewarpStart;
    twmOut[1] = timewarpEnd;
}


//-------------------------------------------------------------------------------------
// *** Rendering

bool HMDState::ConfigureRendering(ovrEyeRenderDesc eyeRenderDescOut[2],
                                  const ovrFovPort eyeFovIn[2],
                                  const ovrRenderAPIConfig* apiConfig,                                  
                                  unsigned distortionCaps)
{
    ThreadChecker::Scope checkScope(&RenderAPIThreadChecker, "ovrHmd_ConfigureRendering");

    // null -> shut down.
    if (!apiConfig)
    {
#if !defined(HEADLESS_APP)
        if (pHSWDisplay)
        {
            pHSWDisplay->Shutdown();
            pHSWDisplay.Clear();
        }
#endif /* !defined(HEADLESS_APP) */

        if (pRenderer)
            pRenderer.Clear();        
        RenderingConfigured = false; 
        return true;
    }

    if (pRenderer &&
        (apiConfig->Header.API != pRenderer->GetRenderAPI()))
    {
        // Shutdown old renderer.
#if !defined(HEADLESS_APP)
        if (pHSWDisplay)
        {
            pHSWDisplay->Shutdown();
            pHSWDisplay.Clear();
        }
#endif /* !defined(HEADLESS_APP) */

        if (pRenderer)
            pRenderer.Clear();
    }

    distortionCaps = distortionCaps & pHmdDesc->DistortionCaps;

    // Step 1: do basic setup configuration
    RenderState.EnabledHmdCaps = EnabledHmdCaps;     // This is a copy... Any cleaner way?
    RenderState.DistortionCaps = distortionCaps;
    RenderState.EyeRenderDesc[0] = RenderState.CalcRenderDesc(ovrEye_Left,  eyeFovIn[0]);
    RenderState.EyeRenderDesc[1] = RenderState.CalcRenderDesc(ovrEye_Right, eyeFovIn[1]);
    eyeRenderDescOut[0] = RenderState.EyeRenderDesc[0];
    eyeRenderDescOut[1] = RenderState.EyeRenderDesc[1];

    // Set RenderingConfigured early to avoid ASSERTs in renderer initialization.
    RenderingConfigured = true;

    if (!pRenderer)
    {
#if !defined(HEADLESS_APP)
        pRenderer = *DistortionRenderer::APICreateRegistry
                        [apiConfig->Header.API]();
#endif /* !defined(HEADLESS_APP) */
    }

    if (!pRenderer 
#if !defined(HEADLESS_APP)
        || !pRenderer->Initialize(apiConfig, &TheTrackingStateReader,
                                  &TimewarpTimer, &RenderState)
#endif /* !defined(HEADLESS_APP) */
       )
    {
        RenderingConfigured = false;
        return false;
    }

#if !defined(HEADLESS_APP)
    // Setup the Health and Safety Warning display system.
    if(pHSWDisplay && (pHSWDisplay->GetRenderAPIType() != apiConfig->Header.API)) // If we need to reconstruct the HSWDisplay for a different graphics API type, delete the existing display.
    {
        pHSWDisplay->Shutdown();
        pHSWDisplay.Clear();
    }

    if(!pHSWDisplay) // Use * below because that for of operator= causes it to inherit the refcount the factory gave the object.
    {
        pHSWDisplay = *OVR::CAPI::HSWDisplay::Factory(apiConfig->Header.API, pHmdDesc, RenderState);
    }

    if (pHSWDisplay)
    {
        pHSWDisplay->Initialize(apiConfig); // This is potentially re-initializing it with a new config.
    }

#ifdef OVR_OS_WIN32
    if (!pWindow)
    {
        // We can automatically populate the window to attach to by
        // pulling that information off the swap chain that the
        // application provides.  If the application later calls the
        // ovrHmd_AttachToWindow() function these will get harmlessly
        // overwritten.  The check above verifies that the window is
        // not set yet, and it insures that this default doesn't
        // overwrite the application setting.

        if (apiConfig->Header.API == ovrRenderAPI_D3D11)
        {
            ovrD3D11Config* d3d11Config = (ovrD3D11Config*)apiConfig;
            if (d3d11Config->D3D11.pSwapChain)
            {
                DXGI_SWAP_CHAIN_DESC desc = {};
                HRESULT hr = d3d11Config->D3D11.pSwapChain->GetDesc(&desc);
                if (SUCCEEDED(hr))
                {
                    pWindow = (void*)desc.OutputWindow;
                }
            }
        }
        else if (apiConfig->Header.API == ovrRenderAPI_OpenGL)
        {
            ovrGLConfig* glConfig = (ovrGLConfig*)apiConfig;
            pWindow = (void*)glConfig->OGL.Window;
        }
OVR_DISABLE_MSVC_WARNING(4996) // Disable deprecation warning
        else if (apiConfig->Header.API == ovrRenderAPI_D3D9)
        {
            ovrD3D9Config* dx9Config = (ovrD3D9Config*)apiConfig;
            if (dx9Config->D3D9.pDevice)
            {
                D3DDEVICE_CREATION_PARAMETERS  params = {};
                HRESULT hr = dx9Config->D3D9.pDevice->GetCreationParameters(&params);
                if (SUCCEEDED(hr))
                {
                    pWindow = (void*)params.hFocusWindow;
                }
            }
        }
OVR_RESTORE_MSVC_WARNING()

        // If a window handle was implied by render configuration,
        if (pWindow)
        {
            // This is the same logic as ovrHmd_AttachToWindow() on Windows:
            if (pClient)
                pClient->Hmd_AttachToWindow(GetNetId(), pWindow);
            Win32::DisplayShim::GetInstance().hWindow = (HWND)pWindow;
            // On the server side it is updating the association of connection
            // to window handle.  This is perfectly safe to update later to
            // a new window handle (verified).  Also verified that if this
            // handle is garbage that it doesn't crash anything.
        }
    }
#endif
#endif /* !defined(HEADLESS_APP) */

    return true;
}


void  HMDState::SubmitEyeTextures(const ovrPosef renderPose[2],
                                  const ovrTexture eyeTexture[2],
                                  const ovrTexture eyeDepthTexture[2])
{
    RenderState.EyeRenderPoses[0] = renderPose[0];
    RenderState.EyeRenderPoses[1] = renderPose[1];

    if (pRenderer)
    {
        if(eyeDepthTexture)
        {
            pRenderer->SubmitEyeWithDepth(0, &eyeTexture[0], &eyeDepthTexture[0]);
            pRenderer->SubmitEyeWithDepth(1, &eyeTexture[1], &eyeDepthTexture[1]);
        }
        else
        {
            //OVR_ASSERT(!(RenderState.DistortionCaps & ovrDistortionCap_DepthProjectedTimeWarp));
            //LogError("{ERR-104} [HMDState] Even though ovrDistortionCap_DepthProjectedTimeWarp is enabled, no depth buffer was provided.");

        pRenderer->SubmitEye(0, &eyeTexture[0]);
        pRenderer->SubmitEye(1, &eyeTexture[1]);
    }
}
}

bool  HMDState::CreateDistortionMesh(ovrEyeType eyeType, ovrFovPort fov,
                                     unsigned int distortionCaps,
                                     ovrDistortionMesh *meshData,
                                     float overrideEyeReliefIfNonZero)
{
    const HmdRenderInfo& hmdri = RenderState.RenderInfo;

    DistortionRenderDesc& distortion = RenderState.Distortion[eyeType];
    if (overrideEyeReliefIfNonZero)
    {
        distortion.Lens = GenerateLensConfigFromEyeRelief(overrideEyeReliefIfNonZero, hmdri);
    }

    if (CalculateDistortionMeshFromFOV(
            hmdri, distortion,
            (eyeType == ovrEye_Left ? StereoEye_Left : StereoEye_Right),
            fov, distortionCaps, meshData))
    {
        return 1;
    }

    return 0;
}


}} // namespace OVR::CAPI