1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
/************************************************************************************
Filename : Tracking_SensorStateReader.cpp
Content : Separate reader component that is able to recover sensor pose
Created : June 4, 2014
Authors : Chris Taylor
Copyright : Copyright 2014 Oculus VR, Inc. All Rights reserved.
Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License");
you may not use the Oculus VR Rift SDK except in compliance with the License,
which is provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.
You may obtain a copy of the License at
http://www.oculusvr.com/licenses/LICENSE-3.1
Unless required by applicable law or agreed to in writing, the Oculus VR SDK
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*************************************************************************************/
#include "Tracking_SensorStateReader.h"
#include "Tracking_PoseState.h"
namespace OVR { namespace Tracking {
//-------------------------------------------------------------------------------------
// This is a "perceptually tuned predictive filter", which means that it is optimized
// for improvements in the VR experience, rather than pure error. In particular,
// jitter is more perceptible at lower speeds whereas latency is more perceptible
// after a high-speed motion. Therefore, the prediction interval is dynamically
// adjusted based on speed. Significant more research is needed to further improve
// this family of filters.
static Pose<double> calcPredictedPose(const PoseState<double>& poseState, double predictionDt)
{
Pose<double> pose = poseState.ThePose;
const double linearCoef = 1.0;
Vector3d angularVelocity = poseState.AngularVelocity;
double angularSpeed = angularVelocity.Length();
// This could be tuned so that linear and angular are combined with different coefficients
double speed = angularSpeed + linearCoef * poseState.LinearVelocity.Length();
const double slope = 0.2; // The rate at which the dynamic prediction interval varies
double candidateDt = slope * speed; // TODO: Replace with smoothstep function
double dynamicDt = predictionDt;
// Choose the candidate if it is shorter, to improve stability
if (candidateDt < predictionDt)
{
dynamicDt = candidateDt;
}
if (angularSpeed > 0.001)
{
pose.Rotation = pose.Rotation * Quatd(angularVelocity, angularSpeed * dynamicDt);
}
pose.Translation += poseState.LinearVelocity * dynamicDt;
return pose;
}
//// SensorStateReader
SensorStateReader::SensorStateReader() :
Updater(NULL),
LastLatWarnTime(0.)
{
}
void SensorStateReader::SetUpdater(const CombinedSharedStateUpdater* updater)
{
Updater = updater;
}
void SensorStateReader::RecenterPose()
{
if (!Updater)
{
return;
}
/*
This resets position to center in x, y, z, and resets yaw to center.
Other rotation components are not affected.
*/
const LocklessSensorState lstate = Updater->SharedSensorState.GetState();
Posed worldFromCpf = lstate.WorldFromImu.ThePose * lstate.ImuFromCpf;
double hmdYaw, hmdPitch, hmdRoll;
worldFromCpf.Rotation.GetEulerAngles<Axis_Y, Axis_X, Axis_Z>(&hmdYaw, &hmdPitch, &hmdRoll);
Posed worldFromCentered(Quatd(Axis_Y, hmdYaw), worldFromCpf.Translation);
CenteredFromWorld = worldFromCentered.Inverted();
}
bool SensorStateReader::GetSensorStateAtTime(double absoluteTime, TrackingState& ss) const
{
if (!Updater)
{
ss.StatusFlags = 0;
return false;
}
const LocklessSensorState lstate = Updater->SharedSensorState.GetState();
// Update time
ss.HeadPose.TimeInSeconds = absoluteTime;
// Update the status flags
ss.StatusFlags = lstate.StatusFlags;
// If no hardware is connected, override the tracking flags
if (0 == (ss.StatusFlags & Status_HMDConnected))
{
ss.StatusFlags &= ~Status_TrackingMask;
}
if (0 == (ss.StatusFlags & Status_PositionConnected))
{
ss.StatusFlags &= ~(Status_PositionTracked | Status_CameraPoseTracked);
}
// If tracking info is invalid,
if (0 == (ss.StatusFlags & Status_TrackingMask))
{
return false;
}
// Delta time from the last available data
double pdt = absoluteTime - lstate.WorldFromImu.TimeInSeconds;
static const double maxPdt = 0.1;
// If delta went negative due to synchronization problems between processes or just a lag spike,
if (pdt < 0.)
{
pdt = 0.;
}
else if (pdt > maxPdt)
{
if (LastLatWarnTime != lstate.WorldFromImu.TimeInSeconds)
{
LastLatWarnTime = lstate.WorldFromImu.TimeInSeconds;
LogText("[SensorStateReader] Prediction interval too high: %f s, clamping at %f s\n", pdt, maxPdt);
}
pdt = maxPdt;
}
ss.HeadPose = PoseStatef(lstate.WorldFromImu);
// Do prediction logic and ImuFromCpf transformation
ss.HeadPose.ThePose = Posef(CenteredFromWorld * calcPredictedPose(lstate.WorldFromImu, pdt) * lstate.ImuFromCpf);
ss.CameraPose = Posef(CenteredFromWorld * lstate.WorldFromCamera);
Posed worldFromLeveledCamera = Posed(Quatd(), lstate.WorldFromCamera.Translation);
ss.LeveledCameraPose = Posef(CenteredFromWorld * worldFromLeveledCamera);
ss.RawSensorData = lstate.RawSensorData;
ss.LastVisionProcessingTime = lstate.LastVisionProcessingTime;
return true;
}
bool SensorStateReader::GetPoseAtTime(double absoluteTime, Posef& transform) const
{
TrackingState ss;
if (!GetSensorStateAtTime(absoluteTime, ss))
{
return false;
}
transform = ss.HeadPose.ThePose;
return true;
}
uint32_t SensorStateReader::GetStatus() const
{
if (!Updater)
{
return 0;
}
const LocklessSensorState lstate = Updater->SharedSensorState.GetState();
// If invalid,
if (0 == (lstate.StatusFlags & Status_TrackingMask))
{
// Return 0 indicating no orientation nor position tracking
return 0;
}
return lstate.StatusFlags;
}
void SensorStateReader::LoadProfileCenteredFromWorld(Profile* profile)
{
double camerastate[7];
if (profile->GetDoubleValues(OVR_KEY_CAMERA_POSITION, camerastate, 7) == 0)
{
for (int i = 0; i < 7; i++) camerastate[i] = 0;
camerastate[3] = 1;//no offset. by default, give the quaternion w component value 1
}
OVR::Quatd orientation = OVR::Quatd(camerastate[0], camerastate[1], camerastate[2], camerastate[3]);
OVR::Vector3d position = OVR::Vector3d(camerastate[4], camerastate[5], camerastate[6]);
CenteredFromWorld = OVR::Posed(orientation, position);
}
void SensorStateReader::SaveProfileCenteredFromWorld(Profile* profile)
{
OVR::Quatd rot = CenteredFromWorld.Rotation;
OVR::Vector3d trans = CenteredFromWorld.Translation;
double vals[7] = { rot.x, rot.y, rot.z, rot.w, trans.x, trans.y, trans.z };
profile->SetDoubleValues(OVR_KEY_CAMERA_POSITION, vals, 7);
}
}} // namespace OVR::Tracking
|