aboutsummaryrefslogtreecommitdiffstats
path: root/LibOVRKernel/Src/Kernel/OVR_Atomic.h
blob: 060615742c02d37c46d97ceca1ad1d91e7d8801d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/************************************************************************************

PublicHeader:   OVR_Kernel.h
Filename    :   OVR_Atomic.h
Content     :   Contains atomic operations and inline fastest locking
                functionality. Will contain #ifdefs for OS efficiency.
                Have non-thread-safe implementaion if not available.
Created     :   September 19, 2012
Notes       : 

Copyright   :   Copyright 2014 Oculus VR, LLC All Rights reserved.

Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); 
you may not use the Oculus VR Rift SDK except in compliance with the License, 
which is provided at the time of installation or download, or which 
otherwise accompanies this software in either electronic or hard copy form.

You may obtain a copy of the License at

http://www.oculusvr.com/licenses/LICENSE-3.2 

Unless required by applicable law or agreed to in writing, the Oculus VR SDK 
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

************************************************************************************/

#ifndef OVR_Atomic_h
#define OVR_Atomic_h

#include "OVR_Types.h"

// Include System thread functionality.
#if defined(OVR_OS_MS) && !defined(OVR_OS_MS_MOBILE)
#include "OVR_Win32_IncludeWindows.h"
#else
#include <pthread.h>
#endif

#ifdef OVR_CC_MSVC
#include <intrin.h>
#pragma intrinsic(_ReadBarrier, _WriteBarrier, _ReadWriteBarrier)
#endif

namespace OVR {


// ****** Declared classes

// If there is NO thread support we implement AtomicOps and
// Lock objects as no-ops. The other classes are not defined.
template<class C> class AtomicOps;
template<class T> class AtomicInt;
template<class T> class AtomicPtr;

class Lock;


//-----------------------------------------------------------------------------------
// ***** AtomicOps

// Atomic operations are provided by the AtomicOps templates class,
// implemented through system-specific AtomicOpsRaw specializations.
// It provides several fundamental operations such as Exchange, ExchangeAdd
// CompareAndSet, and Store_Release. Each function includes several memory
// synchronization versions, important for multiprocessing CPUs with weak
// memory consistency. The following memory fencing strategies are supported:
//
//  - NoSync.  No memory synchronization is done for atomic op.
//  - Release. All other memory writes are completed before atomic op
//             writes its results.
//  - Acquire. Further memory reads are forced to wait until atomic op
//             executes, guaranteeing that the right values will be seen.
//  - Sync.    A combination of Release and Acquire.


// *** AtomicOpsRaw

// AtomicOpsRaw is a specialized template that provides atomic operations 
// used by AtomicOps. This class has two fundamental qualities: (1) it
// defines a type T of correct size, and (2) provides operations that work
// atomically, such as Exchange_Sync and CompareAndSet_Release.

// AtomicOpsRawBase class contains shared constants/classes for AtomicOpsRaw.
// The primary thing is does is define sync class objects, whose destructor and
// constructor provide places to insert appropriate synchronization calls, on 
// systems where such calls are necessary. So far, the breakdown is as follows:
// 
//  - X86 systems don't need custom syncs, since their exchange/atomic
//    instructions are implicitly synchronized.
//  - PowerPC requires lwsync/isync instructions that can use this mechanism.
//  - If some other systems require a mechanism where syncing type is associated
//    with a particular instruction, the default implementation (which implements
//    all Sync, Acquire, and Release modes in terms of NoSync and fence) may not
//    work. Ii that case it will need to be #ifdef-ed conditionally.

struct AtomicOpsRawBase
{
#if !defined(OVR_ENABLE_THREADS) || defined(OVR_CPU_X86) || defined(OVR_CPU_X86_64)
    // Need to have empty constructor to avoid class 'unused' variable warning.
    struct FullSync { inline FullSync() { } };
    struct AcquireSync { inline AcquireSync() { } };
    struct ReleaseSync { inline ReleaseSync() { } };

#elif defined(OVR_CPU_PPC64) || defined(OVR_CPU_PPC)
    struct FullSync { inline FullSync() { asm volatile("sync\n"); } ~FullSync() { asm volatile("isync\n"); } };
    struct AcquireSync { inline AcquireSync() { } ~AcquireSync() { asm volatile("isync\n"); } };
    struct ReleaseSync { inline ReleaseSync() { asm volatile("sync\n"); } };

#elif defined(OVR_CPU_MIPS)
    struct FullSync { inline FullSync() { asm volatile("sync\n"); } ~FullSync() { asm volatile("sync\n"); } };
    struct AcquireSync { inline AcquireSync() { } ~AcquireSync() { asm volatile("sync\n"); } };
    struct ReleaseSync { inline ReleaseSync() { asm volatile("sync\n"); } };

#elif defined(OVR_CPU_ARM) // Includes Android and iOS.
    struct FullSync { inline FullSync() { asm volatile("dmb\n"); } ~FullSync() { asm volatile("dmb\n"); } };
    struct AcquireSync { inline AcquireSync() { } ~AcquireSync() { asm volatile("dmb\n"); } };
    struct ReleaseSync { inline ReleaseSync() { asm volatile("dmb\n"); } };

#elif defined(OVR_CC_GNU) && (__GNUC__ >= 4)
    // __sync functions are already full sync
    struct FullSync { inline FullSync() { } };
    struct AcquireSync { inline AcquireSync() { } };
    struct ReleaseSync { inline ReleaseSync() { } };
#endif
};


// 4-Byte raw data atomic op implementation class.
struct AtomicOpsRaw_4ByteImpl : public AtomicOpsRawBase
{
#if !defined(OVR_ENABLE_THREADS)

    // Provide a type for no-thread-support cases. Used by AtomicOpsRaw_DefImpl.
    typedef uint32_t T;   

    // *** Thread - Safe Atomic Versions.

#elif defined(OVR_OS_MS) 

    // Use special defined for VC6, where volatile is not used and
    // InterlockedCompareExchange is declared incorrectly.
    typedef LONG T;      
#if defined(OVR_CC_MSVC) && (OVR_CC_MSVC < 1300)
    typedef T* InterlockTPtr;
    typedef LPVOID ET;
    typedef ET* InterlockETPtr;
#else
    typedef volatile T* InterlockTPtr;
    typedef T ET;
    typedef InterlockTPtr InterlockETPtr;
#endif
    inline static T     Exchange_NoSync(volatile T* p, T val)            { return InterlockedExchange((InterlockTPtr)p, val); }
    inline static T     ExchangeAdd_NoSync(volatile T* p, T val)         { return InterlockedExchangeAdd((InterlockTPtr)p, val); }
    inline static bool  CompareAndSet_NoSync(volatile T* p, T c, T val)  { return InterlockedCompareExchange((InterlockETPtr)p, (ET)val, (ET)c) == (ET)c; }

#elif defined(OVR_CPU_PPC64) || defined(OVR_CPU_PPC)
    typedef uint32_t T;
    static inline uint32_t Exchange_NoSync(volatile uint32_t *i, uint32_t j)
    {
        uint32_t ret;

        asm volatile("1:\n\t"
                     "lwarx  %[r],0,%[i]\n\t"
                     "stwcx. %[j],0,%[i]\n\t"
                     "bne-   1b\n"
                     : "+m" (*i), [r] "=&b" (ret) : [i] "b" (i), [j] "b" (j) : "cc", "memory");

        return ret;
    }

    static inline uint32_t ExchangeAdd_NoSync(volatile uint32_t *i, uint32_t j)
    {
        uint32_t dummy, ret;

        asm volatile("1:\n\t"
                     "lwarx  %[r],0,%[i]\n\t"
                     "add    %[o],%[r],%[j]\n\t"
                     "stwcx. %[o],0,%[i]\n\t"
                     "bne-   1b\n"
                     : "+m" (*i), [r] "=&b" (ret), [o] "=&r" (dummy) : [i] "b" (i), [j] "b" (j) : "cc", "memory");

        return ret;
    }

    static inline bool     CompareAndSet_NoSync(volatile uint32_t *i, uint32_t c, uint32_t value)
    {
        uint32_t ret;

        asm volatile("1:\n\t"
                     "lwarx  %[r],0,%[i]\n\t"
                     "cmpw   0,%[r],%[cmp]\n\t"
                     "mfcr   %[r]\n\t"
                     "bne-   2f\n\t"
                     "stwcx. %[val],0,%[i]\n\t"
                     "bne-   1b\n\t"
                     "2:\n"
                     : "+m" (*i), [r] "=&b" (ret) : [i] "b" (i), [cmp] "b" (c), [val] "b" (value) : "cc", "memory");

        return (ret & 0x20000000) ? 1 : 0;
    }

#elif defined(OVR_CPU_MIPS)
    typedef uint32_t T;

    static inline uint32_t Exchange_NoSync(volatile uint32_t *i, uint32_t j)
    {
        uint32_t ret;

        asm volatile("1:\n\t"
                     "ll     %[r],0(%[i])\n\t"
                     "sc     %[j],0(%[i])\n\t"
                     "beq    %[j],$0,1b\n\t"
                     "nop    \n"
                     : "+m" (*i), [r] "=&d" (ret) : [i] "d" (i), [j] "d" (j) : "cc", "memory");

        return ret;
    }

    static inline uint32_t ExchangeAdd_NoSync(volatile uint32_t *i, uint32_t j)
    {
        uint32_t ret;

        asm volatile("1:\n\t"
                     "ll     %[r],0(%[i])\n\t"
                     "addu   %[j],%[r],%[j]\n\t"
                     "sc     %[j],0(%[i])\n\t"
                     "beq    %[j],$0,1b\n\t"
                     "nop    \n"
                     : "+m" (*i), [r] "=&d" (ret) : [i] "d" (i), [j] "d" (j) : "cc", "memory");

        return ret;
    }

    static inline bool     CompareAndSet_NoSync(volatile uint32_t *i, uint32_t c, uint32_t value)
    {
        uint32_t ret, dummy;

        asm volatile("1:\n\t"
                     "move   %[r],$0\n\t"
                     "ll     %[o],0(%[i])\n\t"
                     "bne    %[o],%[c],2f\n\t"
                     "move   %[r],%[v]\n\t"
                     "sc     %[r],0(%[i])\n\t"
                     "beq    %[r],$0,1b\n\t"
                     "nop    \n\t"
                     "2:\n"
                     : "+m" (*i),[r] "=&d" (ret), [o] "=&d" (dummy) : [i] "d" (i), [c] "d" (c), [v] "d" (value)
                     : "cc", "memory");

        return ret;
    }

#elif defined(OVR_CPU_ARM) && defined(OVR_CC_ARM)
    typedef uint32_t T;

    static inline uint32_t Exchange_NoSync(volatile uint32_t *i, uint32_t j)
    {
        for(;;)
        {
            T r = __ldrex(i);
            if (__strex(j, i) == 0)
                return r;
        }
    }
    static inline uint32_t ExchangeAdd_NoSync(volatile uint32_t *i, uint32_t j)
    {
        for(;;)
        {
            T r = __ldrex(i);
            if (__strex(r + j, i) == 0)
                return r;
        }
    }

    static inline bool     CompareAndSet_NoSync(volatile uint32_t *i, uint32_t c, uint32_t value)
    {
        for(;;)
        {
            T r = __ldrex(i);
            if (r != c)
                return 0;
            if (__strex(value, i) == 0)
                return 1;
        }
    }

#elif defined(OVR_CPU_ARM)
    typedef uint32_t T;

    static inline uint32_t Exchange_NoSync(volatile uint32_t *i, uint32_t j)
    {
        uint32_t ret, dummy;

        asm volatile("1:\n\t"
            "ldrex  %[r],[%[i]]\n\t"
            "strex  %[t],%[j],[%[i]]\n\t"
            "cmp    %[t],#0\n\t"
            "bne    1b\n\t"
            : "+m" (*i), [r] "=&r" (ret), [t] "=&r" (dummy) : [i] "r" (i), [j] "r" (j) : "cc", "memory");

        return ret;
    }

    static inline uint32_t ExchangeAdd_NoSync(volatile uint32_t *i, uint32_t j)
    {
        uint32_t ret, dummy, test;

        asm volatile("1:\n\t"
            "ldrex  %[r],[%[i]]\n\t"
            "add    %[o],%[r],%[j]\n\t"
            "strex  %[t],%[o],[%[i]]\n\t"
            "cmp    %[t],#0\n\t"
            "bne    1b\n\t"
            : "+m" (*i), [r] "=&r" (ret), [o] "=&r" (dummy), [t] "=&r" (test)  : [i] "r" (i), [j] "r" (j) : "cc", "memory");

        return ret;
    }

    static inline bool     CompareAndSet_NoSync(volatile uint32_t *i, uint32_t c, uint32_t value)
    {
        uint32_t ret = 1, dummy, test;

        asm volatile("1:\n\t"
            "ldrex  %[o],[%[i]]\n\t"
            "cmp    %[o],%[c]\n\t"
            "bne    2f\n\t"
            "strex  %[r],%[v],[%[i]]\n\t"
            "cmp    %[r],#0\n\t"
            "bne    1b\n\t"
            "2:\n"
            : "+m" (*i),[r] "=&r" (ret), [o] "=&r" (dummy), [t] "=&r" (test) : [i] "r" (i), [c] "r" (c), [v] "r" (value)
            : "cc", "memory");

        return !ret;
    }

#elif defined(OVR_CPU_X86)
    typedef uint32_t T;

    static inline uint32_t Exchange_NoSync(volatile uint32_t *i, uint32_t j)
    {
        asm volatile("xchgl %1,%[i]\n"
                     : "+m" (*i), "=q" (j) : [i] "m" (*i), "1" (j) : "cc", "memory");

        return j;
    }

    static inline uint32_t ExchangeAdd_NoSync(volatile uint32_t *i, uint32_t j)
    {
        asm volatile("lock; xaddl %1,%[i]\n"
                     : "+m" (*i), "+q" (j) : [i] "m" (*i) : "cc", "memory");

        return j;
    }

    static inline bool     CompareAndSet_NoSync(volatile uint32_t *i, uint32_t c, uint32_t value)
    {
        uint32_t ret;

        asm volatile("lock; cmpxchgl %[v],%[i]\n"
                     : "+m" (*i), "=a" (ret) : [i] "m" (*i), "1" (c), [v] "q" (value) : "cc", "memory");

        return (ret == c);
    }

#elif defined(OVR_CC_GNU) && (__GNUC__ >= 4 && __GNUC_MINOR__ >= 1)

    typedef uint32_t T;

    static inline T   Exchange_NoSync(volatile T *i, T j)
    {
        T v;
        do {
            v = *i;
        } while (!__sync_bool_compare_and_swap(i, v, j));
        return v;
    }

    static inline T   ExchangeAdd_NoSync(volatile T *i, T j)
    {
        return __sync_fetch_and_add(i, j);
    }

    static inline bool     CompareAndSet_NoSync(volatile T *i, T c, T value)
    {
        return __sync_bool_compare_and_swap(i, c, value);
    }

#endif // OS
};


// 8-Byte raw data data atomic op implementation class.
// Currently implementation is provided only on systems with 64-bit pointers.
struct AtomicOpsRaw_8ByteImpl : public AtomicOpsRawBase
{    
#if !defined(OVR_64BIT_POINTERS) || !defined(OVR_ENABLE_THREADS)

    // Provide a type for no-thread-support cases. Used by AtomicOpsRaw_DefImpl.
    typedef uint64_t T;

    // *** Thread - Safe OS specific versions.
#elif defined(OVR_OS_MS)

    // This is only for 64-bit systems.
    typedef LONG64      T;
    typedef volatile T* InterlockTPtr;    
    inline static T     Exchange_NoSync(volatile T* p, T val)            { return InterlockedExchange64((InterlockTPtr)p, val); }
    inline static T     ExchangeAdd_NoSync(volatile T* p, T val)         { return InterlockedExchangeAdd64((InterlockTPtr)p, val); }
    inline static bool  CompareAndSet_NoSync(volatile T* p, T c, T val)  { return InterlockedCompareExchange64((InterlockTPtr)p, val, c) == c; }

#elif defined(OVR_CPU_PPC64)
 
    typedef uint64_t T;

    static inline uint64_t Exchange_NoSync(volatile uint64_t *i, uint64_t j)
    {
        uint64_t dummy, ret;

        asm volatile("1:\n\t"
                     "ldarx  %[r],0,%[i]\n\t"
                     "mr     %[o],%[j]\n\t"
                     "stdcx. %[o],0,%[i]\n\t"
                     "bne-   1b\n"
                     : "+m" (*i), [r] "=&b" (ret), [o] "=&r" (dummy) : [i] "b" (i), [j] "b" (j) : "cc");

        return ret;
    }

    static inline uint64_t ExchangeAdd_NoSync(volatile uint64_t *i, uint64_t j)
    {
        uint64_t dummy, ret;

        asm volatile("1:\n\t"
                     "ldarx  %[r],0,%[i]\n\t"
                     "add    %[o],%[r],%[j]\n\t"
                     "stdcx. %[o],0,%[i]\n\t"
                     "bne-   1b\n"
                     : "+m" (*i), [r] "=&b" (ret), [o] "=&r" (dummy) : [i] "b" (i), [j] "b" (j) : "cc");

        return ret;
    }

    static inline bool     CompareAndSet_NoSync(volatile uint64_t *i, uint64_t c, uint64_t value)
    {
        uint64_t ret, dummy;

        asm volatile("1:\n\t"
                     "ldarx  %[r],0,%[i]\n\t"
                     "cmpw   0,%[r],%[cmp]\n\t"
                     "mfcr   %[r]\n\t"
                     "bne-   2f\n\t"
                     "stdcx. %[val],0,%[i]\n\t"
                     "bne-   1b\n\t"
                     "2:\n"
                     : "+m" (*i), [r] "=&b" (ret), [o] "=&r" (dummy) : [i] "b" (i), [cmp] "b" (c), [val] "b" (value) : "cc");

        return (ret & 0x20000000) ? 1 : 0;
    }

#elif defined(OVR_CC_GNU) && (__GNUC__ >= 4 && __GNUC_MINOR__ >= 1)

    typedef uint64_t T;

    static inline T   Exchange_NoSync(volatile T *i, T j)
    {
        T v;
        do {
            v = *i;
        } while (!__sync_bool_compare_and_swap(i, v, j));
        return v;
    }

    static inline T   ExchangeAdd_NoSync(volatile T *i, T j)
    {
        return __sync_fetch_and_add(i, j);
    }

    static inline bool     CompareAndSet_NoSync(volatile T *i, T c, T value)
    {
        return __sync_bool_compare_and_swap(i, c, value);
    }

#endif // OS
};


// Default implementation for AtomicOpsRaw; provides implementation of mem-fenced
// atomic operations where fencing is done with a sync object wrapped around a NoSync
// operation implemented in the base class. If such implementation is not possible
// on a given platform, #ifdefs can be used to disable it and then op functions can be
// implemented individually in the appropriate AtomicOpsRaw<size> class.

template<class O>
struct AtomicOpsRaw_DefImpl : public O
{
    typedef typename O::T O_T;
    typedef typename O::FullSync    O_FullSync;
    typedef typename O::AcquireSync O_AcquireSync;
    typedef typename O::ReleaseSync O_ReleaseSync;

    // If there is no thread support, provide the default implementation. In this case,
    // the base class (0) must still provide the T declaration.
#ifndef OVR_ENABLE_THREADS

    // Atomic exchange of val with argument. Returns old val.
    inline static O_T   Exchange_NoSync(volatile O_T* p, O_T val)           { O_T old = *p; *p = val; return old; }
    // Adds a new val to argument; returns its old val.
    inline static O_T   ExchangeAdd_NoSync(volatile O_T* p, O_T val)        { O_T old = *p; *p += val; return old; }
    // Compares the argument data with 'c' val.
    // If succeeded, stores val int '*p' and returns true; otherwise returns false.
    inline static bool  CompareAndSet_NoSync(volatile O_T* p, O_T c, O_T val) { if (*p==c) { *p = val; return 1; } return 0; }

#endif

    // If NoSync wrapped implementation may not be possible, it this block should be
    //  replaced with per-function implementation in O.
    // "AtomicOpsRaw_DefImpl<O>::" prefix in calls below.
    inline static O_T   Exchange_Sync(volatile O_T* p, O_T val)                { O_FullSync    sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::Exchange_NoSync(p, val); }
    inline static O_T   Exchange_Release(volatile O_T* p, O_T val)             { O_ReleaseSync sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::Exchange_NoSync(p, val); }
    inline static O_T   Exchange_Acquire(volatile O_T* p, O_T val)             { O_AcquireSync sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::Exchange_NoSync(p, val); }  
    inline static O_T   ExchangeAdd_Sync(volatile O_T* p, O_T val)             { O_FullSync    sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::ExchangeAdd_NoSync(p, val); }
    inline static O_T   ExchangeAdd_Release(volatile O_T* p, O_T val)          { O_ReleaseSync sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::ExchangeAdd_NoSync(p, val); }
    inline static O_T   ExchangeAdd_Acquire(volatile O_T* p, O_T val)          { O_AcquireSync sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::ExchangeAdd_NoSync(p, val); }
    inline static bool  CompareAndSet_Sync(volatile O_T* p, O_T c, O_T val)    { O_FullSync    sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::CompareAndSet_NoSync(p,c,val); }
    inline static bool  CompareAndSet_Release(volatile O_T* p, O_T c, O_T val) { O_ReleaseSync sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::CompareAndSet_NoSync(p,c,val); }
    inline static bool  CompareAndSet_Acquire(volatile O_T* p, O_T c, O_T val) { O_AcquireSync sync; OVR_UNUSED(sync); return AtomicOpsRaw_DefImpl<O>::CompareAndSet_NoSync(p,c,val); }

    // Loads and stores with memory fence. These have only the relevant versions.
#ifdef OVR_CPU_X86
    // On X86, Store_Release is implemented as exchange. Note that we can also
    // consider 'sfence' in the future, although it is not as compatible with older CPUs.
    inline static void  Store_Release(volatile O_T* p, O_T val)  { Exchange_Release(p, val); }
#else
    inline static void  Store_Release(volatile O_T* p, O_T val)  { O_ReleaseSync sync; OVR_UNUSED(sync); *p = val; }
#endif
    inline static O_T   Load_Acquire(const volatile O_T* p)
    {
        O_AcquireSync sync;
        OVR_UNUSED(sync);

#if defined(OVR_CC_MSVC)
        _ReadBarrier(); // Compiler fence and load barrier
#elif defined(OVR_CC_INTEL)
        __memory_barrier(); // Compiler fence
#else
        // GCC-compatible:
        asm volatile ("" : : : "memory"); // Compiler fence
#endif

        return *p;
    }
};


template<int size>
struct AtomicOpsRaw : public AtomicOpsRawBase { };

template<>
struct AtomicOpsRaw<4> : public AtomicOpsRaw_DefImpl<AtomicOpsRaw_4ByteImpl>
{   
    // Ensure that assigned type size is correct.
    AtomicOpsRaw()
    { OVR_COMPILER_ASSERT(sizeof(AtomicOpsRaw_DefImpl<AtomicOpsRaw_4ByteImpl>::T) == 4); }
};
template<>
struct AtomicOpsRaw<8> : public AtomicOpsRaw_DefImpl<AtomicOpsRaw_8ByteImpl>
{
    AtomicOpsRaw()
    { OVR_COMPILER_ASSERT(sizeof(AtomicOpsRaw_DefImpl<AtomicOpsRaw_8ByteImpl>::T) == 8); }
};


// *** AtomicOps - implementation of atomic Ops for specified class

// Implements atomic ops on a class, provided that the object is either
// 4 or 8 bytes in size (depending on the AtomicOpsRaw specializations
// available). Relies on AtomicOpsRaw for much of implementation.

template<class C>
class AtomicOps
{
    typedef AtomicOpsRaw<sizeof(C)>       Ops;
    typedef typename Ops::T               T;
    typedef volatile typename Ops::T*     PT;
    // We cast through unions to (1) avoid pointer size compiler warnings
    // and (2) ensure that there are no problems with strict pointer aliasing.
    union C2T_union { C c; T t; };

public:
    // General purpose implementation for standard syncs.    
    inline static C     Exchange_Sync(volatile C* p, C val)             { C2T_union u; u.c = val; u.t = Ops::Exchange_Sync((PT)p, u.t); return u.c; }
    inline static C     Exchange_Release(volatile C* p, C val)          { C2T_union u; u.c = val; u.t = Ops::Exchange_Release((PT)p, u.t); return u.c; }
    inline static C     Exchange_Acquire(volatile C* p, C val)          { C2T_union u; u.c = val; u.t = Ops::Exchange_Acquire((PT)p, u.t); return u.c; }
    inline static C     Exchange_NoSync(volatile C* p, C val)           { C2T_union u; u.c = val; u.t = Ops::Exchange_NoSync((PT)p, u.t); return u.c; }
    inline static C     ExchangeAdd_Sync(volatile C* p, C val)          { C2T_union u; u.c = val; u.t = Ops::ExchangeAdd_Sync((PT)p, u.t); return u.c; }
    inline static C     ExchangeAdd_Release(volatile C* p, C val)       { C2T_union u; u.c = val; u.t = Ops::ExchangeAdd_Release((PT)p, u.t); return u.c; }
    inline static C     ExchangeAdd_Acquire(volatile C* p, C val)       { C2T_union u; u.c = val; u.t = Ops::ExchangeAdd_Acquire((PT)p, u.t); return u.c; }
    inline static C     ExchangeAdd_NoSync(volatile C* p, C val)        { C2T_union u; u.c = val; u.t = Ops::ExchangeAdd_NoSync((PT)p, u.t); return u.c; }
    inline static bool  CompareAndSet_Sync(volatile C* p, C c, C val)   { C2T_union u,cu; u.c = val; cu.c = c; return Ops::CompareAndSet_Sync((PT)p, cu.t, u.t); }
    inline static bool  CompareAndSet_Release(volatile C* p, C c, C val){ C2T_union u,cu; u.c = val; cu.c = c; return Ops::CompareAndSet_Release((PT)p, cu.t, u.t); }
    inline static bool  CompareAndSet_Acquire(volatile C* p, C c, C val){ C2T_union u,cu; u.c = val; cu.c = c; return Ops::CompareAndSet_Acquire((PT)p, cu.t, u.t); }
    inline static bool  CompareAndSet_NoSync(volatile C* p, C c, C val) { C2T_union u,cu; u.c = val; cu.c = c; return Ops::CompareAndSet_NoSync((PT)p, cu.t, u.t); }

    // Loads and stores with memory fence. These have only the relevant versions.    
    inline static void  Store_Release(volatile C* p, C val)             { C2T_union u; u.c = val; Ops::Store_Release((PT)p, u.t); }    
    inline static C     Load_Acquire(const volatile C* p)               { C2T_union u; u.t = Ops::Load_Acquire((PT)p); return u.c; }

    // Deprecated typo error:
    inline static bool  CompareAndSet_Relse(volatile C* p, C c, C val){ C2T_union u,cu; u.c = val; cu.c = c; return Ops::CompareAndSet_Acquire((PT)p, cu.t, u.t); }
};



// Atomic value base class - implements operations shared for integers and pointers.
template<class T>
class AtomicValueBase
{
protected:
    typedef AtomicOps<T> Ops;
public:

    volatile T  Value;

    inline AtomicValueBase()                  { }
    explicit inline AtomicValueBase(T val)    { Ops::Store_Release(&Value, val); }

    // Most libraries (TBB and Joshua Scholar's) library do not do Load_Acquire
    // here, since most algorithms do not require atomic loads. Needs some research.    
    inline operator T() const { return Value; }

    // *** Standard Atomic inlines
    inline T     Exchange_Sync(T val)               { return Ops::Exchange_Sync(&Value,  val); }
    inline T     Exchange_Release(T val)            { return Ops::Exchange_Release(&Value, val); }
    inline T     Exchange_Acquire(T val)            { return Ops::Exchange_Acquire(&Value, val); }
    inline T     Exchange_NoSync(T val)             { return Ops::Exchange_NoSync(&Value, val); }
    inline bool  CompareAndSet_Sync(T c, T val)     { return Ops::CompareAndSet_Sync(&Value, c, val); }
    inline bool  CompareAndSet_Release(T c, T val)  { return Ops::CompareAndSet_Release(&Value, c, val); }
    inline bool  CompareAndSet_Acquire(T c, T val)  { return Ops::CompareAndSet_Acquire(&Value, c, val); }
    inline bool  CompareAndSet_NoSync(T c, T val)   { return Ops::CompareAndSet_NoSync(&Value, c, val); }
    // Load & Store.
    inline void  Store_Release(T val)               { Ops::Store_Release(&Value, val); }
    inline T     Load_Acquire() const               { return Ops::Load_Acquire(&Value);  }
};


// ***** AtomicPtr - Atomic pointer template

// This pointer class supports atomic assignments with release,
// increment / decrement operations, and conditional compare + set.

template<class T>
class AtomicPtr : public AtomicValueBase<T*>
{
    typedef typename AtomicValueBase<T*>::Ops Ops;

public:
    // Initialize pointer value to 0 by default; use Store_Release only with explicit constructor.
    inline AtomicPtr() : AtomicValueBase<T*>()                     { this->Value = 0; }
    explicit inline AtomicPtr(T* val) : AtomicValueBase<T*>(val)   { }
        
    // Pointer access.
    inline T* operator -> () const     { return this->Load_Acquire(); }

    // It looks like it is convenient to have Load_Acquire characteristics
    // for this, since that is convenient for algorithms such as linked
    // list traversals that can be added to bu another thread.
    inline operator T* () const        { return this->Load_Acquire(); }


    // *** Standard Atomic inlines (applicable to pointers)

    // ExhangeAdd considers pointer size for pointers.
    template<class I>
    inline T*     ExchangeAdd_Sync(I incr)      { return Ops::ExchangeAdd_Sync(&this->Value, ((T*)0) + incr); }
    template<class I>
    inline T*     ExchangeAdd_Release(I incr)   { return Ops::ExchangeAdd_Release(&this->Value, ((T*)0) + incr); }
    template<class I>
    inline T*     ExchangeAdd_Acquire(I incr)   { return Ops::ExchangeAdd_Acquire(&this->Value, ((T*)0) + incr); }
    template<class I>
    inline T*     ExchangeAdd_NoSync(I incr)    { return Ops::ExchangeAdd_NoSync(&this->Value, ((T*)0) + incr); }

    // *** Atomic Operators

    inline T* operator = (T* val)  { this->Store_Release(val); return val; }

    template<class I>
    inline T* operator += (I val) { return ExchangeAdd_Sync(val) + val; }
    template<class I>
    inline T* operator -= (I val) { return operator += (-val); }

    inline T* operator ++ ()      { return ExchangeAdd_Sync(1) + 1; }
    inline T* operator -- ()      { return ExchangeAdd_Sync(-1) - 1; }
    inline T* operator ++ (int)   { return ExchangeAdd_Sync(1); }
    inline T* operator -- (int)   { return ExchangeAdd_Sync(-1); }
};


// ***** AtomicInt - Atomic integer template

// Implements an atomic integer type; the exact type to use is provided 
// as an argument. Supports atomic Acquire / Release semantics, atomic
// arithmetic operations, and atomic conditional compare + set.

template<class T>
class AtomicInt : public AtomicValueBase<T>
{
    typedef typename AtomicValueBase<T>::Ops Ops;

public:
    inline AtomicInt() : AtomicValueBase<T>()                     { }
    explicit inline AtomicInt(T val) : AtomicValueBase<T>(val)    { }


    // *** Standard Atomic inlines (applicable to int)   
    inline T     ExchangeAdd_Sync(T val)            { return Ops::ExchangeAdd_Sync(&this->Value, val); }
    inline T     ExchangeAdd_Release(T val)         { return Ops::ExchangeAdd_Release(&this->Value, val); }
    inline T     ExchangeAdd_Acquire(T val)         { return Ops::ExchangeAdd_Acquire(&this->Value, val); }
    inline T     ExchangeAdd_NoSync(T val)          { return Ops::ExchangeAdd_NoSync(&this->Value, val); }
    // These increments could be more efficient because they don't return a value.
    inline void  Increment_Sync()                   { ExchangeAdd_Sync((T)1); }
    inline void  Increment_Release()                { ExchangeAdd_Release((T)1); }
    inline void  Increment_Acquire()                { ExchangeAdd_Acquire((T)1); }    
    inline void  Increment_NoSync()                 { ExchangeAdd_NoSync((T)1); }

    // *** Atomic Operators

    inline T operator = (T val)  { this->Store_Release(val); return val; }
    inline T operator += (T val) { return ExchangeAdd_Sync(val) + val; }
    inline T operator -= (T val) { return ExchangeAdd_Sync(0 - val) - val; }

    inline T operator ++ ()      { return ExchangeAdd_Sync((T)1) + 1; }
    inline T operator -- ()      { return ExchangeAdd_Sync(((T)0)-1) - 1; }
    inline T operator ++ (int)   { return ExchangeAdd_Sync((T)1); }
    inline T operator -- (int)   { return ExchangeAdd_Sync(((T)0)-1); }

    // More complex atomic operations. Leave it to compiler whether to optimize them or not.
    T operator &= (T arg)
    {
        T comp, newVal;
        do {
            comp   = this->Value;
            newVal = comp & arg;
        } while(!this->CompareAndSet_Sync(comp, newVal));
        return newVal;
    }

    T operator |= (T arg)
    {
        T comp, newVal;
        do {
            comp   = this->Value;
            newVal = comp | arg;
        } while(!this->CompareAndSet_Sync(comp, newVal));
        return newVal;
    }

    T operator ^= (T arg)
    {
        T comp, newVal;
        do {
            comp   = this->Value;
            newVal = comp ^ arg;
        } while(!this->CompareAndSet_Sync(comp, newVal));
        return newVal;
    }

    T operator *= (T arg)
    {
        T comp, newVal;
        do {
            comp   = this->Value;
            newVal = comp * arg;
        } while(!this->CompareAndSet_Sync(comp, newVal));
        return newVal;
    }

    T operator /= (T arg)
    {
        T comp, newVal;
        do {
            comp   = this->Value;
            newVal = comp / arg;
        } while(!CompareAndSet_Sync(comp, newVal));
        return newVal;
    }

    T operator >>= (unsigned bits)
    {
        T comp, newVal;
        do {
            comp   = this->Value;
            newVal = comp >> bits;
        } while(!CompareAndSet_Sync(comp, newVal));
        return newVal;
    }

    T operator <<= (unsigned bits)
    {
        T comp, newVal;
        do {
            comp   = this->Value;
            newVal = comp << bits;
        } while(!this->CompareAndSet_Sync(comp, newVal));
        return newVal;
    }
};


//-----------------------------------------------------------------------------------
// ***** Lock

// Lock is a simplest and most efficient mutual-exclusion lock class.
// Unlike Mutex, it cannot be waited on.

class Lock
{
    // NOTE: Locks are not allocatable and they themselves should not allocate 
    // memory by standard means. This is the case because StandardAllocator
    // relies on this class.
    // Make 'delete' private. Don't do this for 'new' since it can be redefined.  
    void    operator delete(void*) {}


    // *** Lock implementation for various platforms.
    
#if !defined(OVR_ENABLE_THREADS)

public:
    // With no thread support, lock does nothing.
    inline Lock() { }
    inline Lock(unsigned) { }
    inline ~Lock() { }    
    inline void DoLock() { }
    inline void Unlock() { }

   // Windows.   
#elif defined(OVR_OS_MS)

    CRITICAL_SECTION cs;
public:   
    Lock(unsigned spinCount = 10000);   // Mutexes with non-zero spin counts usually result in better performance.
    ~Lock();
    // Locking functions.
    inline void DoLock()    { ::EnterCriticalSection(&cs); }
    inline void Unlock()    { ::LeaveCriticalSection(&cs); }

#else
    pthread_mutex_t mutex;

public:
    static pthread_mutexattr_t RecursiveAttr;
    static bool                RecursiveAttrInit;

    Lock (unsigned spinCount = 0) // To do: Support spin count, probably via a custom lock implementation.
    {
        OVR_UNUSED(spinCount);
        if (!RecursiveAttrInit)
        {
            pthread_mutexattr_init(&RecursiveAttr);
            pthread_mutexattr_settype(&RecursiveAttr, PTHREAD_MUTEX_RECURSIVE);
            RecursiveAttrInit = 1;
        }
        pthread_mutex_init(&mutex,&RecursiveAttr);
    }
    ~Lock ()                { pthread_mutex_destroy(&mutex); }
    inline void DoLock()    { pthread_mutex_lock(&mutex); }
    inline void Unlock()    { pthread_mutex_unlock(&mutex); }

#endif // OVR_ENABLE_THREDS


public:
    // Locker class, used for automatic locking
    class Locker
    {
    public:     
        Lock *pLock;
        inline Locker(Lock *plock)
        { pLock = plock; pLock->DoLock(); }
        inline ~Locker()
        { pLock->Unlock();  }
    };
};


//-------------------------------------------------------------------------------------
// Globally shared Lock implementation used for MessageHandlers, etc.

class SharedLock
{    
public:
    SharedLock() : UseCount(0) {}

    Lock* GetLockAddRef();
    void  ReleaseLock(Lock* plock);
   
private:
    Lock* toLock() { return (Lock*)Buffer; }

    // UseCount and max alignment.
    volatile int    UseCount;
    uint64_t        Buffer[(sizeof(Lock)+sizeof(uint64_t)-1)/sizeof(uint64_t)];
};


} // OVR

#endif