aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2019-03-18 22:06:01 -0700
committerChris Robinson <[email protected]>2019-03-18 22:06:01 -0700
commitd31514f8beff74d4425a7dd7bcc2084023a3ffdd (patch)
tree8e3484aeb023fcf8351c127c3cd238858cb857d3
parent3e816de4fb3f8be4746643f5b9c5c07186e16b6c (diff)
Move some inline functions from alMain.h to alnumeric.h
-rw-r--r--OpenAL32/Include/alMain.h239
-rw-r--r--common/alnumeric.h235
2 files changed, 235 insertions, 239 deletions
diff --git a/OpenAL32/Include/alMain.h b/OpenAL32/Include/alMain.h
index f3761a5b..ca5661af 100644
--- a/OpenAL32/Include/alMain.h
+++ b/OpenAL32/Include/alMain.h
@@ -12,12 +12,6 @@
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
-#ifdef HAVE_INTRIN_H
-#include <intrin.h>
-#endif
-#ifdef HAVE_SSE_INTRINSICS
-#include <xmmintrin.h>
-#endif
#include <array>
#include <vector>
@@ -36,7 +30,6 @@
#include "alnumeric.h"
#include "threads.h"
#include "ambidefs.h"
-#include "opthelpers.h"
template<typename T, size_t N>
@@ -58,108 +51,6 @@ constexpr inline size_t countof(const T(&)[N]) noexcept
#endif
-/* Define CTZ macros (count trailing zeros), and POPCNT macros (population
- * count/count 1 bits), for 32- and 64-bit integers. The CTZ macros' results
- * are *UNDEFINED* if the value is 0.
- */
-#ifdef __GNUC__
-
-#define POPCNT32 __builtin_popcount
-#define CTZ32 __builtin_ctz
-#if SIZEOF_LONG == 8
-#define POPCNT64 __builtin_popcountl
-#define CTZ64 __builtin_ctzl
-#else
-#define POPCNT64 __builtin_popcountll
-#define CTZ64 __builtin_ctzll
-#endif
-
-#elif defined(HAVE_BITSCANFORWARD64_INTRINSIC)
-
-inline int msvc64_popcnt32(ALuint v)
-{ return (int)__popcnt(v); }
-#define POPCNT32 msvc64_popcnt32
-inline int msvc64_ctz32(ALuint v)
-{
- unsigned long idx = 32;
- _BitScanForward(&idx, v);
- return (int)idx;
-}
-#define CTZ32 msvc64_ctz32
-
-inline int msvc64_popcnt64(uint64_t v)
-{ return (int)__popcnt64(v); }
-#define POPCNT64 msvc64_popcnt64
-inline int msvc64_ctz64(uint64_t v)
-{
- unsigned long idx = 64;
- _BitScanForward64(&idx, v);
- return (int)idx;
-}
-#define CTZ64 msvc64_ctz64
-
-#elif defined(HAVE_BITSCANFORWARD_INTRINSIC)
-
-inline int msvc_popcnt32(ALuint v)
-{ return (int)__popcnt(v); }
-#define POPCNT32 msvc_popcnt32
-inline int msvc_ctz32(ALuint v)
-{
- unsigned long idx = 32;
- _BitScanForward(&idx, v);
- return (int)idx;
-}
-#define CTZ32 msvc_ctz32
-
-inline int msvc_popcnt64(uint64_t v)
-{ return (int)(__popcnt((ALuint)v) + __popcnt((ALuint)(v>>32))); }
-#define POPCNT64 msvc_popcnt64
-inline int msvc_ctz64(uint64_t v)
-{
- unsigned long idx = 64;
- if(!_BitScanForward(&idx, v&0xffffffff))
- {
- if(_BitScanForward(&idx, v>>32))
- idx += 32;
- }
- return (int)idx;
-}
-#define CTZ64 msvc_ctz64
-
-#else
-
-/* There be black magics here. The popcnt method is derived from
- * https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
- * while the ctz-utilizing-popcnt algorithm is shown here
- * http://www.hackersdelight.org/hdcodetxt/ntz.c.txt
- * as the ntz2 variant. These likely aren't the most efficient methods, but
- * they're good enough if the GCC or MSVC intrinsics aren't available.
- */
-inline int fallback_popcnt32(ALuint v)
-{
- v = v - ((v >> 1) & 0x55555555u);
- v = (v & 0x33333333u) + ((v >> 2) & 0x33333333u);
- v = (v + (v >> 4)) & 0x0f0f0f0fu;
- return (int)((v * 0x01010101u) >> 24);
-}
-#define POPCNT32 fallback_popcnt32
-inline int fallback_ctz32(ALuint value)
-{ return fallback_popcnt32(~value & (value - 1)); }
-#define CTZ32 fallback_ctz32
-
-inline int fallback_popcnt64(uint64_t v)
-{
- v = v - ((v >> 1) & 0x5555555555555555_u64);
- v = (v & 0x3333333333333333_u64) + ((v >> 2) & 0x3333333333333333_u64);
- v = (v + (v >> 4)) & 0x0f0f0f0f0f0f0f0f_u64;
- return (int)((v * 0x0101010101010101_u64) >> 56);
-}
-#define POPCNT64 fallback_popcnt64
-inline int fallback_ctz64(uint64_t value)
-{ return fallback_popcnt64(~value & (value - 1)); }
-#define CTZ64 fallback_ctz64
-#endif
-
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__)
#define IS_LITTLE_ENDIAN (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#else
@@ -194,136 +85,6 @@ struct bs2b;
#define MIN_OUTPUT_RATE (8000)
-/* Fast float-to-int conversion. No particular rounding mode is assumed; the
- * IEEE-754 default is round-to-nearest with ties-to-even, though an app could
- * change it on its own threads. On some systems, a truncating conversion may
- * always be the fastest method.
- */
-inline int fastf2i(float f) noexcept
-{
-#if defined(HAVE_SSE_INTRINSICS)
- return _mm_cvt_ss2si(_mm_set_ss(f));
-
-#elif defined(_MSC_VER) && defined(_M_IX86_FP)
-
- ALint i;
- __asm fld f
- __asm fistp i
- return i;
-
-#elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
-
- int i;
-#ifdef __SSE_MATH__
- __asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
-#else
- __asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
-#endif
- return i;
-
- /* On GCC when compiling with -fno-math-errno, lrintf can be inlined to
- * some simple instructions. Clang does not inline it, always generating a
- * libc call, while MSVC's implementation is horribly slow, so always fall
- * back to a normal integer conversion for them.
- */
-#elif !defined(_MSC_VER) && !defined(__clang__)
-
- return lrintf(f);
-
-#else
-
- return (ALint)f;
-#endif
-}
-
-/* Converts float-to-int using standard behavior (truncation). */
-inline int float2int(float f) noexcept
-{
-#if defined(HAVE_SSE_INTRINSICS)
- return _mm_cvtt_ss2si(_mm_set_ss(f));
-
-#elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
- !defined(__SSE_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0)
- ALint sign, shift, mant;
- union {
- ALfloat f;
- ALint i;
- } conv;
-
- conv.f = f;
- sign = (conv.i>>31) | 1;
- shift = ((conv.i>>23)&0xff) - (127+23);
-
- /* Over/underflow */
- if(UNLIKELY(shift >= 31 || shift < -23))
- return 0;
-
- mant = (conv.i&0x7fffff) | 0x800000;
- if(LIKELY(shift < 0))
- return (mant >> -shift) * sign;
- return (mant << shift) * sign;
-
-#else
-
- return static_cast<ALint>(f);
-#endif
-}
-
-/* Rounds a float to the nearest integral value, according to the current
- * rounding mode. This is essentially an inlined version of rintf, although
- * makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
- */
-inline float fast_roundf(float f) noexcept
-{
-#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
- !defined(__SSE_MATH__)
-
- float out;
- __asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
- return out;
-
-#else
-
- /* Integral limit, where sub-integral precision is not available for
- * floats.
- */
- static const float ilim[2] = {
- 8388608.0f /* 0x1.0p+23 */,
- -8388608.0f /* -0x1.0p+23 */
- };
- ALuint sign, expo;
- union {
- ALfloat f;
- ALuint i;
- } conv;
-
- conv.f = f;
- sign = (conv.i>>31)&0x01;
- expo = (conv.i>>23)&0xff;
-
- if(UNLIKELY(expo >= 150/*+23*/))
- {
- /* An exponent (base-2) of 23 or higher is incapable of sub-integral
- * precision, so it's already an integral value. We don't need to worry
- * about infinity or NaN here.
- */
- return f;
- }
- /* Adding the integral limit to the value (with a matching sign) forces a
- * result that has no sub-integral precision, and is consequently forced to
- * round to an integral value. Removing the integral limit then restores
- * the initial value rounded to the integral. The compiler should not
- * optimize this out because of non-associative rules on floating-point
- * math (as long as you don't use -fassociative-math,
- * -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
- * may break).
- */
- f += ilim[sign];
- return f - ilim[sign];
-#endif
-}
-
-
enum DevProbe {
ALL_DEVICE_PROBE,
CAPTURE_DEVICE_PROBE
diff --git a/common/alnumeric.h b/common/alnumeric.h
index 08a4858d..a2bcd8ee 100644
--- a/common/alnumeric.h
+++ b/common/alnumeric.h
@@ -2,6 +2,15 @@
#define AL_NUMERIC_H
#include <stdint.h>
+#ifdef HAVE_INTRIN_H
+#include <intrin.h>
+#endif
+#ifdef HAVE_SSE_INTRINSICS
+#include <xmmintrin.h>
+#endif
+
+#include "opthelpers.h"
+
inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
inline constexpr uint64_t operator "" _u64(unsigned long long int n) noexcept { return static_cast<uint64_t>(n); }
@@ -79,4 +88,230 @@ inline size_t RoundUp(size_t value, size_t r) noexcept
return value - (value%r);
}
+
+/* Define CTZ macros (count trailing zeros), and POPCNT macros (population
+ * count/count 1 bits), for 32- and 64-bit integers. The CTZ macros' results
+ * are *UNDEFINED* if the value is 0.
+ */
+#ifdef __GNUC__
+
+#define POPCNT32 __builtin_popcount
+#define CTZ32 __builtin_ctz
+#if SIZEOF_LONG == 8
+#define POPCNT64 __builtin_popcountl
+#define CTZ64 __builtin_ctzl
+#else
+#define POPCNT64 __builtin_popcountll
+#define CTZ64 __builtin_ctzll
+#endif
+
+#elif defined(HAVE_BITSCANFORWARD64_INTRINSIC)
+
+inline int msvc64_popcnt32(ALuint v)
+{ return (int)__popcnt(v); }
+#define POPCNT32 msvc64_popcnt32
+inline int msvc64_ctz32(ALuint v)
+{
+ unsigned long idx = 32;
+ _BitScanForward(&idx, v);
+ return (int)idx;
+}
+#define CTZ32 msvc64_ctz32
+
+inline int msvc64_popcnt64(uint64_t v)
+{ return (int)__popcnt64(v); }
+#define POPCNT64 msvc64_popcnt64
+inline int msvc64_ctz64(uint64_t v)
+{
+ unsigned long idx = 64;
+ _BitScanForward64(&idx, v);
+ return (int)idx;
+}
+#define CTZ64 msvc64_ctz64
+
+#elif defined(HAVE_BITSCANFORWARD_INTRINSIC)
+
+inline int msvc_popcnt32(ALuint v)
+{ return (int)__popcnt(v); }
+#define POPCNT32 msvc_popcnt32
+inline int msvc_ctz32(ALuint v)
+{
+ unsigned long idx = 32;
+ _BitScanForward(&idx, v);
+ return (int)idx;
+}
+#define CTZ32 msvc_ctz32
+
+inline int msvc_popcnt64(uint64_t v)
+{ return (int)(__popcnt((ALuint)v) + __popcnt((ALuint)(v>>32))); }
+#define POPCNT64 msvc_popcnt64
+inline int msvc_ctz64(uint64_t v)
+{
+ unsigned long idx = 64;
+ if(!_BitScanForward(&idx, v&0xffffffff))
+ {
+ if(_BitScanForward(&idx, v>>32))
+ idx += 32;
+ }
+ return (int)idx;
+}
+#define CTZ64 msvc_ctz64
+
+#else
+
+/* There be black magics here. The popcnt method is derived from
+ * https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ * while the ctz-utilizing-popcnt algorithm is shown here
+ * http://www.hackersdelight.org/hdcodetxt/ntz.c.txt
+ * as the ntz2 variant. These likely aren't the most efficient methods, but
+ * they're good enough if the GCC or MSVC intrinsics aren't available.
+ */
+inline int fallback_popcnt32(ALuint v)
+{
+ v = v - ((v >> 1) & 0x55555555u);
+ v = (v & 0x33333333u) + ((v >> 2) & 0x33333333u);
+ v = (v + (v >> 4)) & 0x0f0f0f0fu;
+ return (int)((v * 0x01010101u) >> 24);
+}
+#define POPCNT32 fallback_popcnt32
+inline int fallback_ctz32(ALuint value)
+{ return fallback_popcnt32(~value & (value - 1)); }
+#define CTZ32 fallback_ctz32
+
+inline int fallback_popcnt64(uint64_t v)
+{
+ v = v - ((v >> 1) & 0x5555555555555555_u64);
+ v = (v & 0x3333333333333333_u64) + ((v >> 2) & 0x3333333333333333_u64);
+ v = (v + (v >> 4)) & 0x0f0f0f0f0f0f0f0f_u64;
+ return (int)((v * 0x0101010101010101_u64) >> 56);
+}
+#define POPCNT64 fallback_popcnt64
+inline int fallback_ctz64(uint64_t value)
+{ return fallback_popcnt64(~value & (value - 1)); }
+#define CTZ64 fallback_ctz64
+#endif
+
+
+/**
+ * Fast float-to-int conversion. No particular rounding mode is assumed; the
+ * IEEE-754 default is round-to-nearest with ties-to-even, though an app could
+ * change it on its own threads. On some systems, a truncating conversion may
+ * always be the fastest method.
+ */
+inline int fastf2i(float f) noexcept
+{
+#if defined(HAVE_SSE_INTRINSICS)
+ return _mm_cvt_ss2si(_mm_set_ss(f));
+
+#elif defined(_MSC_VER) && defined(_M_IX86_FP)
+
+ int i;
+ __asm fld f
+ __asm fistp i
+ return i;
+
+#elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
+
+ int i;
+#ifdef __SSE_MATH__
+ __asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
+#else
+ __asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
+#endif
+ return i;
+
+#else
+
+ return static_cast<int>(f);
+#endif
+}
+
+/** Converts float-to-int using standard behavior (truncation). */
+inline int float2int(float f) noexcept
+{
+#if defined(HAVE_SSE_INTRINSICS)
+ return _mm_cvtt_ss2si(_mm_set_ss(f));
+
+#elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
+ !defined(__SSE_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0)
+ int sign, shift, mant;
+ union {
+ float f;
+ int i;
+ } conv;
+
+ conv.f = f;
+ sign = (conv.i>>31) | 1;
+ shift = ((conv.i>>23)&0xff) - (127+23);
+
+ /* Over/underflow */
+ if(UNLIKELY(shift >= 31 || shift < -23))
+ return 0;
+
+ mant = (conv.i&0x7fffff) | 0x800000;
+ if(LIKELY(shift < 0))
+ return (mant >> -shift) * sign;
+ return (mant << shift) * sign;
+
+#else
+
+ return static_cast<int>(f);
+#endif
+}
+
+/**
+ * Rounds a float to the nearest integral value, according to the current
+ * rounding mode. This is essentially an inlined version of rintf, although
+ * makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
+ */
+inline float fast_roundf(float f) noexcept
+{
+#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
+ !defined(__SSE_MATH__)
+
+ float out;
+ __asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
+ return out;
+
+#else
+
+ /* Integral limit, where sub-integral precision is not available for
+ * floats.
+ */
+ static constexpr float ilim[2] = {
+ 8388608.0f /* 0x1.0p+23 */,
+ -8388608.0f /* -0x1.0p+23 */
+ };
+ unsigned int sign, expo;
+ union {
+ float f;
+ unsigned int i;
+ } conv;
+
+ conv.f = f;
+ sign = (conv.i>>31)&0x01;
+ expo = (conv.i>>23)&0xff;
+
+ if(UNLIKELY(expo >= 150/*+23*/))
+ {
+ /* An exponent (base-2) of 23 or higher is incapable of sub-integral
+ * precision, so it's already an integral value. We don't need to worry
+ * about infinity or NaN here.
+ */
+ return f;
+ }
+ /* Adding the integral limit to the value (with a matching sign) forces a
+ * result that has no sub-integral precision, and is consequently forced to
+ * round to an integral value. Removing the integral limit then restores
+ * the initial value rounded to the integral. The compiler should not
+ * optimize this out because of non-associative rules on floating-point
+ * math (as long as you don't use -fassociative-math,
+ * -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
+ * may break).
+ */
+ f += ilim[sign];
+ return f - ilim[sign];
+#endif
+}
+
#endif /* AL_NUMERIC_H */