aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/ALu.c
diff options
context:
space:
mode:
authorSven Gothel <[email protected]>2019-04-07 23:39:04 +0200
committerSven Gothel <[email protected]>2019-04-07 23:39:04 +0200
commit73233ce69919fc19c53ce8663c5b8cc05227f07e (patch)
treef2b6ccc1a14d7c387f33398a44ea4511d7ecb212 /Alc/ALu.c
parent8efa4c7ba5ee8eb399d31a9884e45f743d4625ad (diff)
parent99a55c445211fea77af6ab61cbc6a6ec4fbdc9b9 (diff)
Merge branch 'v1.19' of git://repo.or.cz/openal-soft into v1.19v1.19
Diffstat (limited to 'Alc/ALu.c')
-rw-r--r--Alc/ALu.c2490
1 files changed, 1411 insertions, 1079 deletions
diff --git a/Alc/ALu.c b/Alc/ALu.c
index 91c2aa7f..03abb116 100644
--- a/Alc/ALu.c
+++ b/Alc/ALu.c
@@ -34,25 +34,21 @@
#include "alu.h"
#include "bs2b.h"
#include "hrtf.h"
+#include "mastering.h"
+#include "uhjfilter.h"
+#include "bformatdec.h"
#include "static_assert.h"
+#include "ringbuffer.h"
+#include "filters/splitter.h"
-#include "mixer_defs.h"
+#include "mixer/defs.h"
+#include "fpu_modes.h"
+#include "cpu_caps.h"
+#include "bsinc_inc.h"
#include "backends/base.h"
-struct ChanMap {
- enum Channel channel;
- ALfloat angle;
- ALfloat elevation;
-};
-
-/* Cone scalar */
-ALfloat ConeScale = 1.0f;
-
-/* Localized Z scalar for mono sources */
-ALfloat ZScale = 1.0f;
-
extern inline ALfloat minf(ALfloat a, ALfloat b);
extern inline ALfloat maxf(ALfloat a, ALfloat b);
extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
@@ -77,9 +73,12 @@ extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
+extern inline size_t minz(size_t a, size_t b);
+extern inline size_t maxz(size_t a, size_t b);
+extern inline size_t clampz(size_t val, size_t min, size_t max);
+
extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
-extern inline ALfloat resample_fir4(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALuint frac);
-extern inline ALfloat resample_fir8(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat val4, ALfloat val5, ALfloat val6, ALfloat val7, ALuint frac);
+extern inline ALfloat cubic(ALfloat val1, ALfloat val2, ALfloat val3, ALfloat val4, ALfloat mu);
extern inline void aluVectorSet(aluVector *restrict vector, ALfloat x, ALfloat y, ALfloat z, ALfloat w);
@@ -91,50 +90,69 @@ extern inline void aluMatrixfSet(aluMatrixf *matrix,
ALfloat m20, ALfloat m21, ALfloat m22, ALfloat m23,
ALfloat m30, ALfloat m31, ALfloat m32, ALfloat m33);
-extern inline void aluMatrixdSetRow(aluMatrixd *matrix, ALuint row,
- ALdouble m0, ALdouble m1, ALdouble m2, ALdouble m3);
-extern inline void aluMatrixdSet(aluMatrixd *matrix,
- ALdouble m00, ALdouble m01, ALdouble m02, ALdouble m03,
- ALdouble m10, ALdouble m11, ALdouble m12, ALdouble m13,
- ALdouble m20, ALdouble m21, ALdouble m22, ALdouble m23,
- ALdouble m30, ALdouble m31, ALdouble m32, ALdouble m33);
+/* Cone scalar */
+ALfloat ConeScale = 1.0f;
+
+/* Localized Z scalar for mono sources */
+ALfloat ZScale = 1.0f;
+
+/* Force default speed of sound for distance-related reverb decay. */
+ALboolean OverrideReverbSpeedOfSound = AL_FALSE;
+
+const aluMatrixf IdentityMatrixf = {{
+ { 1.0f, 0.0f, 0.0f, 0.0f },
+ { 0.0f, 1.0f, 0.0f, 0.0f },
+ { 0.0f, 0.0f, 1.0f, 0.0f },
+ { 0.0f, 0.0f, 0.0f, 1.0f },
+}};
-/* NOTE: HRTF is set up a bit special in the device. By default, the device's
- * DryBuffer, NumChannels, ChannelName, and Channel fields correspond to the
- * output mixing format, and the DryBuffer is then converted and written to the
- * backend's audio buffer.
- *
- * With HRTF, these fields correspond to a virtual format (typically B-Format),
- * and the actual output is stored in DryBuffer[NumChannels] for the left
- * channel and DryBuffer[NumChannels+1] for the right. As a final output step,
- * the virtual channels will have HRTF applied and written to the actual
- * output. Things like effects and B-Format decoding will want to write to the
- * virtual channels so that they can be mixed with HRTF in full 3D.
- *
- * Sources that get mixed using HRTF directly (or that want to skip HRTF
- * completely) will need to offset the output buffer so that they skip the
- * virtual output and write to the actual output channels. This is the reason
- * you'll see
- *
- * voice->Direct.OutBuffer += voice->Direct.OutChannels;
- * voice->Direct.OutChannels = 2;
- *
- * at various points in the code where HRTF is explicitly used or bypassed.
- */
-static inline HrtfMixerFunc SelectHrtfMixer(void)
+static void ClearArray(ALfloat f[MAX_OUTPUT_CHANNELS])
+{
+ size_t i;
+ for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
+ f[i] = 0.0f;
+}
+
+struct ChanMap {
+ enum Channel channel;
+ ALfloat angle;
+ ALfloat elevation;
+};
+
+static HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_C;
+
+
+void DeinitVoice(ALvoice *voice)
+{
+ al_free(ATOMIC_EXCHANGE_PTR_SEQ(&voice->Update, NULL));
+}
+
+
+static inline HrtfDirectMixerFunc SelectHrtfMixer(void)
{
-#ifdef HAVE_SSE
- if((CPUCapFlags&CPU_CAP_SSE))
- return MixHrtf_SSE;
-#endif
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
- return MixHrtf_Neon;
+ return MixDirectHrtf_Neon;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return MixDirectHrtf_SSE;
#endif
- return MixHrtf_C;
+ return MixDirectHrtf_C;
+}
+
+
+/* This RNG method was created based on the math found in opusdec. It's quick,
+ * and starting with a seed value of 22222, is suitable for generating
+ * whitenoise.
+ */
+static inline ALuint dither_rng(ALuint *seed)
+{
+ *seed = (*seed * 96314165) + 907633515;
+ return *seed;
}
@@ -150,1337 +168,1646 @@ static inline ALfloat aluDotproduct(const aluVector *vec1, const aluVector *vec2
return vec1->v[0]*vec2->v[0] + vec1->v[1]*vec2->v[1] + vec1->v[2]*vec2->v[2];
}
-static inline ALfloat aluNormalize(ALfloat *vec)
+static ALfloat aluNormalize(ALfloat *vec)
{
ALfloat length = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
- if(length > 0.0f)
+ if(length > FLT_EPSILON)
{
ALfloat inv_length = 1.0f/length;
vec[0] *= inv_length;
vec[1] *= inv_length;
vec[2] *= inv_length;
+ return length;
}
- return length;
+ vec[0] = vec[1] = vec[2] = 0.0f;
+ return 0.0f;
}
+static void aluMatrixfFloat3(ALfloat *vec, ALfloat w, const aluMatrixf *mtx)
+{
+ ALfloat v[4] = { vec[0], vec[1], vec[2], w };
-static inline void aluCrossproductd(const ALdouble *inVector1, const ALdouble *inVector2, ALdouble *outVector)
+ vec[0] = v[0]*mtx->m[0][0] + v[1]*mtx->m[1][0] + v[2]*mtx->m[2][0] + v[3]*mtx->m[3][0];
+ vec[1] = v[0]*mtx->m[0][1] + v[1]*mtx->m[1][1] + v[2]*mtx->m[2][1] + v[3]*mtx->m[3][1];
+ vec[2] = v[0]*mtx->m[0][2] + v[1]*mtx->m[1][2] + v[2]*mtx->m[2][2] + v[3]*mtx->m[3][2];
+}
+
+static aluVector aluMatrixfVector(const aluMatrixf *mtx, const aluVector *vec)
{
- outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
- outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
- outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
+ aluVector v;
+ v.v[0] = vec->v[0]*mtx->m[0][0] + vec->v[1]*mtx->m[1][0] + vec->v[2]*mtx->m[2][0] + vec->v[3]*mtx->m[3][0];
+ v.v[1] = vec->v[0]*mtx->m[0][1] + vec->v[1]*mtx->m[1][1] + vec->v[2]*mtx->m[2][1] + vec->v[3]*mtx->m[3][1];
+ v.v[2] = vec->v[0]*mtx->m[0][2] + vec->v[1]*mtx->m[1][2] + vec->v[2]*mtx->m[2][2] + vec->v[3]*mtx->m[3][2];
+ v.v[3] = vec->v[0]*mtx->m[0][3] + vec->v[1]*mtx->m[1][3] + vec->v[2]*mtx->m[2][3] + vec->v[3]*mtx->m[3][3];
+ return v;
+}
+
+
+void aluInit(void)
+{
+ MixDirectHrtf = SelectHrtfMixer();
}
-static inline ALdouble aluNormalized(ALdouble *vec)
+
+static void SendSourceStoppedEvent(ALCcontext *context, ALuint id)
{
- ALdouble length = sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
- if(length > 0.0)
+ AsyncEvent evt = ASYNC_EVENT(EventType_SourceStateChange);
+ ALbitfieldSOFT enabledevt;
+ size_t strpos;
+ ALuint scale;
+
+ enabledevt = ATOMIC_LOAD(&context->EnabledEvts, almemory_order_acquire);
+ if(!(enabledevt&EventType_SourceStateChange)) return;
+
+ evt.u.user.type = AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT;
+ evt.u.user.id = id;
+ evt.u.user.param = AL_STOPPED;
+
+ /* Normally snprintf would be used, but this is called from the mixer and
+ * that function's not real-time safe, so we have to construct it manually.
+ */
+ strcpy(evt.u.user.msg, "Source ID "); strpos = 10;
+ scale = 1000000000;
+ while(scale > 0 && scale > id)
+ scale /= 10;
+ while(scale > 0)
{
- ALdouble inv_length = 1.0/length;
- vec[0] *= inv_length;
- vec[1] *= inv_length;
- vec[2] *= inv_length;
+ evt.u.user.msg[strpos++] = '0' + ((id/scale)%10);
+ scale /= 10;
}
- return length;
+ strcpy(evt.u.user.msg+strpos, " state changed to AL_STOPPED");
+
+ if(ll_ringbuffer_write(context->AsyncEvents, (const char*)&evt, 1) == 1)
+ alsem_post(&context->EventSem);
}
-static inline ALvoid aluMatrixdFloat3(ALfloat *vec, ALfloat w, const aluMatrixd *mtx)
+
+static void ProcessHrtf(ALCdevice *device, ALsizei SamplesToDo)
{
- ALdouble v[4] = { vec[0], vec[1], vec[2], w };
+ DirectHrtfState *state;
+ int lidx, ridx;
+ ALsizei c;
+
+ if(device->AmbiUp)
+ ambiup_process(device->AmbiUp,
+ device->Dry.Buffer, device->Dry.NumChannels, device->FOAOut.Buffer,
+ SamplesToDo
+ );
- vec[0] = (ALfloat)(v[0]*mtx->m[0][0] + v[1]*mtx->m[1][0] + v[2]*mtx->m[2][0] + v[3]*mtx->m[3][0]);
- vec[1] = (ALfloat)(v[0]*mtx->m[0][1] + v[1]*mtx->m[1][1] + v[2]*mtx->m[2][1] + v[3]*mtx->m[3][1]);
- vec[2] = (ALfloat)(v[0]*mtx->m[0][2] + v[1]*mtx->m[1][2] + v[2]*mtx->m[2][2] + v[3]*mtx->m[3][2]);
+ lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ assert(lidx != -1 && ridx != -1);
+
+ state = device->Hrtf;
+ for(c = 0;c < device->Dry.NumChannels;c++)
+ {
+ MixDirectHrtf(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
+ device->Dry.Buffer[c], state->Offset, state->IrSize,
+ state->Chan[c].Coeffs, state->Chan[c].Values, SamplesToDo
+ );
+ }
+ state->Offset += SamplesToDo;
}
-static inline ALvoid aluMatrixdDouble3(ALdouble *vec, ALdouble w, const aluMatrixd *mtx)
+static void ProcessAmbiDec(ALCdevice *device, ALsizei SamplesToDo)
{
- ALdouble v[4] = { vec[0], vec[1], vec[2], w };
+ if(device->Dry.Buffer != device->FOAOut.Buffer)
+ bformatdec_upSample(device->AmbiDecoder,
+ device->Dry.Buffer, device->FOAOut.Buffer, device->FOAOut.NumChannels,
+ SamplesToDo
+ );
+ bformatdec_process(device->AmbiDecoder,
+ device->RealOut.Buffer, device->RealOut.NumChannels, device->Dry.Buffer,
+ SamplesToDo
+ );
+}
- vec[0] = v[0]*mtx->m[0][0] + v[1]*mtx->m[1][0] + v[2]*mtx->m[2][0] + v[3]*mtx->m[3][0];
- vec[1] = v[0]*mtx->m[0][1] + v[1]*mtx->m[1][1] + v[2]*mtx->m[2][1] + v[3]*mtx->m[3][1];
- vec[2] = v[0]*mtx->m[0][2] + v[1]*mtx->m[1][2] + v[2]*mtx->m[2][2] + v[3]*mtx->m[3][2];
+static void ProcessAmbiUp(ALCdevice *device, ALsizei SamplesToDo)
+{
+ ambiup_process(device->AmbiUp,
+ device->RealOut.Buffer, device->RealOut.NumChannels, device->FOAOut.Buffer,
+ SamplesToDo
+ );
}
-static inline aluVector aluMatrixdVector(const aluMatrixd *mtx, const aluVector *vec)
+static void ProcessUhj(ALCdevice *device, ALsizei SamplesToDo)
{
- aluVector v;
- v.v[0] = (ALfloat)(vec->v[0]*mtx->m[0][0] + vec->v[1]*mtx->m[1][0] + vec->v[2]*mtx->m[2][0] + vec->v[3]*mtx->m[3][0]);
- v.v[1] = (ALfloat)(vec->v[0]*mtx->m[0][1] + vec->v[1]*mtx->m[1][1] + vec->v[2]*mtx->m[2][1] + vec->v[3]*mtx->m[3][1]);
- v.v[2] = (ALfloat)(vec->v[0]*mtx->m[0][2] + vec->v[1]*mtx->m[1][2] + vec->v[2]*mtx->m[2][2] + vec->v[3]*mtx->m[3][2]);
- v.v[3] = (ALfloat)(vec->v[0]*mtx->m[0][3] + vec->v[1]*mtx->m[1][3] + vec->v[2]*mtx->m[2][3] + vec->v[3]*mtx->m[3][3]);
- return v;
+ int lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ int ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ assert(lidx != -1 && ridx != -1);
+
+ /* Encode to stereo-compatible 2-channel UHJ output. */
+ EncodeUhj2(device->Uhj_Encoder,
+ device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
+ device->Dry.Buffer, SamplesToDo
+ );
+}
+
+static void ProcessBs2b(ALCdevice *device, ALsizei SamplesToDo)
+{
+ int lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ int ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ assert(lidx != -1 && ridx != -1);
+
+ /* Apply binaural/crossfeed filter */
+ bs2b_cross_feed(device->Bs2b, device->RealOut.Buffer[lidx],
+ device->RealOut.Buffer[ridx], SamplesToDo);
}
+void aluSelectPostProcess(ALCdevice *device)
+{
+ if(device->HrtfHandle)
+ device->PostProcess = ProcessHrtf;
+ else if(device->AmbiDecoder)
+ device->PostProcess = ProcessAmbiDec;
+ else if(device->AmbiUp)
+ device->PostProcess = ProcessAmbiUp;
+ else if(device->Uhj_Encoder)
+ device->PostProcess = ProcessUhj;
+ else if(device->Bs2b)
+ device->PostProcess = ProcessBs2b;
+ else
+ device->PostProcess = NULL;
+}
-/* Prepares the interpolator for a given rate (determined by increment). A
- * result of AL_FALSE indicates that the filter output will completely cut
- * the input signal.
+
+/* Prepares the interpolator for a given rate (determined by increment).
*
* With a bit of work, and a trade of memory for CPU cost, this could be
* modified for use with an interpolated increment for buttery-smooth pitch
* changes.
*/
-static ALboolean BsincPrepare(const ALuint increment, BsincState *state)
+void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
{
- static const ALfloat scaleBase = 1.510578918e-01f, scaleRange = 1.177936623e+00f;
- static const ALuint m[BSINC_SCALE_COUNT] = { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 };
- static const ALuint to[4][BSINC_SCALE_COUNT] =
- {
- { 0, 24, 408, 792, 1176, 1560, 1944, 2328, 2648, 2968, 3288, 3544, 3800, 4056, 4248, 4440 },
- { 4632, 5016, 5400, 5784, 6168, 6552, 6936, 7320, 7640, 7960, 8280, 8536, 8792, 9048, 9240, 0 },
- { 0, 9432, 9816, 10200, 10584, 10968, 11352, 11736, 12056, 12376, 12696, 12952, 13208, 13464, 13656, 13848 },
- { 14040, 14424, 14808, 15192, 15576, 15960, 16344, 16728, 17048, 17368, 17688, 17944, 18200, 18456, 18648, 0 }
- };
- static const ALuint tm[2][BSINC_SCALE_COUNT] =
- {
- { 0, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 },
- { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 0 }
- };
- ALfloat sf;
- ALuint si, pi;
- ALboolean uncut = AL_TRUE;
+ ALfloat sf = 0.0f;
+ ALsizei si = BSINC_SCALE_COUNT-1;
if(increment > FRACTIONONE)
{
sf = (ALfloat)FRACTIONONE / increment;
- if(sf < scaleBase)
- {
- /* Signal has been completely cut. The return result can be used
- * to skip the filter (and output zeros) as an optimization.
- */
- sf = 0.0f;
- si = 0;
- uncut = AL_FALSE;
- }
- else
- {
- sf = (BSINC_SCALE_COUNT - 1) * (sf - scaleBase) * scaleRange;
- si = fastf2u(sf);
- /* The interpolation factor is fit to this diagonally-symmetric
- * curve to reduce the transition ripple caused by interpolating
- * different scales of the sinc function.
- */
- sf = 1.0f - cosf(asinf(sf - si));
- }
- }
- else
- {
- sf = 0.0f;
- si = BSINC_SCALE_COUNT - 1;
+ sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
+ si = float2int(sf);
+ /* The interpolation factor is fit to this diagonally-symmetric curve
+ * to reduce the transition ripple caused by interpolating different
+ * scales of the sinc function.
+ */
+ sf = 1.0f - cosf(asinf(sf - si));
}
state->sf = sf;
- state->m = m[si];
- state->l = -(ALint)((m[si] / 2) - 1);
- /* The CPU cost of this table re-mapping could be traded for the memory
- * cost of a complete table map (1024 elements large).
- */
- for(pi = 0;pi < BSINC_PHASE_COUNT;pi++)
- {
- state->coeffs[pi].filter = &bsincTab[to[0][si] + tm[0][si]*pi];
- state->coeffs[pi].scDelta = &bsincTab[to[1][si] + tm[1][si]*pi];
- state->coeffs[pi].phDelta = &bsincTab[to[2][si] + tm[0][si]*pi];
- state->coeffs[pi].spDelta = &bsincTab[to[3][si] + tm[1][si]*pi];
- }
- return uncut;
+ state->m = table->m[si];
+ state->l = (state->m/2) - 1;
+ state->filter = table->Tab + table->filterOffset[si];
}
-/* Calculates the fade time from the changes in gain and listener to source
- * angle between updates. The result is a the time, in seconds, for the
- * transition to complete.
- */
-static ALfloat CalcFadeTime(ALfloat oldGain, ALfloat newGain, const aluVector *olddir, const aluVector *newdir)
+static bool CalcContextParams(ALCcontext *Context)
{
- ALfloat gainChange, angleChange, change;
+ ALlistener *Listener = Context->Listener;
+ struct ALcontextProps *props;
- /* Calculate the normalized dB gain change. */
- newGain = maxf(newGain, 0.0001f);
- oldGain = maxf(oldGain, 0.0001f);
- gainChange = fabsf(log10f(newGain / oldGain) / log10f(0.0001f));
+ props = ATOMIC_EXCHANGE_PTR(&Context->Update, NULL, almemory_order_acq_rel);
+ if(!props) return false;
- /* Calculate the angle change only when there is enough gain to notice it. */
- angleChange = 0.0f;
- if(gainChange > 0.0001f || newGain > 0.0001f)
- {
- /* No angle change when the directions are equal or degenerate (when
- * both have zero length).
- */
- if(newdir->v[0] != olddir->v[0] || newdir->v[1] != olddir->v[1] || newdir->v[2] != olddir->v[2])
- {
- ALfloat dotp = aluDotproduct(olddir, newdir);
- angleChange = acosf(clampf(dotp, -1.0f, 1.0f)) / F_PI;
- }
- }
-
- /* Use the largest of the two changes, and apply a significance shaping
- * function to it. The result is then scaled to cover a 15ms transition
- * range.
- */
- change = maxf(angleChange * 25.0f, gainChange) * 2.0f;
- return minf(change, 1.0f) * 0.015f;
-}
+ Listener->Params.MetersPerUnit = props->MetersPerUnit;
+ Listener->Params.DopplerFactor = props->DopplerFactor;
+ Listener->Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
+ if(!OverrideReverbSpeedOfSound)
+ Listener->Params.ReverbSpeedOfSound = Listener->Params.SpeedOfSound *
+ Listener->Params.MetersPerUnit;
-static void UpdateDryStepping(DirectParams *params, ALuint num_chans, ALuint steps)
-{
- ALfloat delta;
- ALuint i, j;
-
- if(steps < 2)
- {
- for(i = 0;i < num_chans;i++)
- {
- MixGains *gains = params->Gains[i];
- for(j = 0;j < params->OutChannels;j++)
- {
- gains[j].Current = gains[j].Target;
- gains[j].Step = 0.0f;
- }
- }
- params->Counter = 0;
- return;
- }
+ Listener->Params.SourceDistanceModel = props->SourceDistanceModel;
+ Listener->Params.DistanceModel = props->DistanceModel;
- delta = 1.0f / (ALfloat)steps;
- for(i = 0;i < num_chans;i++)
- {
- MixGains *gains = params->Gains[i];
- for(j = 0;j < params->OutChannels;j++)
- {
- ALfloat diff = gains[j].Target - gains[j].Current;
- if(fabsf(diff) >= GAIN_SILENCE_THRESHOLD)
- gains[j].Step = diff * delta;
- else
- {
- gains[j].Current = gains[j].Target;
- gains[j].Step = 0.0f;
- }
- }
- }
- params->Counter = steps;
+ ATOMIC_REPLACE_HEAD(struct ALcontextProps*, &Context->FreeContextProps, props);
+ return true;
}
-static void UpdateWetStepping(SendParams *params, ALuint num_chans, ALuint steps)
+static bool CalcListenerParams(ALCcontext *Context)
{
- ALfloat delta;
- ALuint i;
+ ALlistener *Listener = Context->Listener;
+ ALfloat N[3], V[3], U[3], P[3];
+ struct ALlistenerProps *props;
+ aluVector vel;
- if(steps < 2)
- {
- for(i = 0;i < num_chans;i++)
- {
- params->Gains[i].Current = params->Gains[i].Target;
- params->Gains[i].Step = 0.0f;
- }
- params->Counter = 0;
- return;
- }
-
- delta = 1.0f / (ALfloat)steps;
- for(i = 0;i < num_chans;i++)
- {
- ALfloat diff = params->Gains[i].Target - params->Gains[i].Current;
- if(fabsf(diff) >= GAIN_SILENCE_THRESHOLD)
- params->Gains[i].Step = diff * delta;
- else
- {
- params->Gains[i].Current = params->Gains[i].Target;
- params->Gains[i].Step = 0.0f;
- }
- }
- params->Counter = steps;
-}
-
-
-static ALvoid CalcListenerParams(ALlistener *Listener)
-{
- ALdouble N[3], V[3], U[3], P[3];
+ props = ATOMIC_EXCHANGE_PTR(&Listener->Update, NULL, almemory_order_acq_rel);
+ if(!props) return false;
/* AT then UP */
- N[0] = Listener->Forward[0];
- N[1] = Listener->Forward[1];
- N[2] = Listener->Forward[2];
- aluNormalized(N);
- V[0] = Listener->Up[0];
- V[1] = Listener->Up[1];
- V[2] = Listener->Up[2];
- aluNormalized(V);
+ N[0] = props->Forward[0];
+ N[1] = props->Forward[1];
+ N[2] = props->Forward[2];
+ aluNormalize(N);
+ V[0] = props->Up[0];
+ V[1] = props->Up[1];
+ V[2] = props->Up[2];
+ aluNormalize(V);
/* Build and normalize right-vector */
- aluCrossproductd(N, V, U);
- aluNormalized(U);
+ aluCrossproduct(N, V, U);
+ aluNormalize(U);
- aluMatrixdSet(&Listener->Params.Matrix,
+ aluMatrixfSet(&Listener->Params.Matrix,
U[0], V[0], -N[0], 0.0,
U[1], V[1], -N[1], 0.0,
U[2], V[2], -N[2], 0.0,
0.0, 0.0, 0.0, 1.0
);
- P[0] = Listener->Position.v[0];
- P[1] = Listener->Position.v[1];
- P[2] = Listener->Position.v[2];
- aluMatrixdDouble3(P, 1.0, &Listener->Params.Matrix);
- aluMatrixdSetRow(&Listener->Params.Matrix, 3, -P[0], -P[1], -P[2], 1.0f);
+ P[0] = props->Position[0];
+ P[1] = props->Position[1];
+ P[2] = props->Position[2];
+ aluMatrixfFloat3(P, 1.0, &Listener->Params.Matrix);
+ aluMatrixfSetRow(&Listener->Params.Matrix, 3, -P[0], -P[1], -P[2], 1.0f);
- Listener->Params.Velocity = aluMatrixdVector(&Listener->Params.Matrix, &Listener->Velocity);
-}
+ aluVectorSet(&vel, props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f);
+ Listener->Params.Velocity = aluMatrixfVector(&Listener->Params.Matrix, &vel);
-ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
-{
- static const struct ChanMap MonoMap[1] = {
- { FrontCenter, 0.0f, 0.0f }
- }, StereoMap[2] = {
- { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
- }, StereoWideMap[2] = {
- { FrontLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
- }, RearMap[2] = {
- { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
- { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
- }, QuadMap[4] = {
- { FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
- { BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
- { BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
- }, X51Map[6] = {
- { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
- { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
- { LFE, 0.0f, 0.0f },
- { SideLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
- { SideRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
- }, X61Map[7] = {
- { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
- { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
- { SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
- { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
- }, X71Map[8] = {
- { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
- { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
- { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
- { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
- { SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
- { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
- };
+ Listener->Params.Gain = props->Gain * Context->GainBoost;
- ALCdevice *Device = ALContext->Device;
- ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
- ALbufferlistitem *BufferListItem;
- enum FmtChannels Channels;
- ALfloat DryGain, DryGainHF, DryGainLF;
- ALfloat WetGain[MAX_SENDS];
- ALfloat WetGainHF[MAX_SENDS];
- ALfloat WetGainLF[MAX_SENDS];
- ALuint NumSends, Frequency;
- ALboolean Relative;
- const struct ChanMap *chans = NULL;
- ALuint num_channels = 0;
- ALboolean DirectChannels;
- ALboolean isbformat = AL_FALSE;
- ALfloat Pitch;
- ALuint i, j, c;
-
- /* Get device properties */
- NumSends = Device->NumAuxSends;
- Frequency = Device->Frequency;
+ ATOMIC_REPLACE_HEAD(struct ALlistenerProps*, &Context->FreeListenerProps, props);
+ return true;
+}
- /* Get listener properties */
- ListenerGain = ALContext->Listener->Gain;
+static bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context, bool force)
+{
+ struct ALeffectslotProps *props;
+ ALeffectState *state;
- /* Get source properties */
- SourceVolume = ALSource->Gain;
- MinVolume = ALSource->MinGain;
- MaxVolume = ALSource->MaxGain;
- Pitch = ALSource->Pitch;
- Relative = ALSource->HeadRelative;
- DirectChannels = ALSource->DirectChannels;
+ props = ATOMIC_EXCHANGE_PTR(&slot->Update, NULL, almemory_order_acq_rel);
+ if(!props && !force) return false;
- voice->Direct.OutBuffer = Device->DryBuffer;
- voice->Direct.OutChannels = Device->NumChannels;
- for(i = 0;i < NumSends;i++)
+ if(props)
{
- ALeffectslot *Slot = ALSource->Send[i].Slot;
- if(!Slot && i == 0)
- Slot = Device->DefaultSlot;
- if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
- voice->Send[i].OutBuffer = NULL;
+ slot->Params.Gain = props->Gain;
+ slot->Params.AuxSendAuto = props->AuxSendAuto;
+ slot->Params.EffectType = props->Type;
+ slot->Params.EffectProps = props->Props;
+ if(IsReverbEffect(props->Type))
+ {
+ slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
+ slot->Params.DecayTime = props->Props.Reverb.DecayTime;
+ slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio;
+ slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
+ slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
+ slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
+ }
else
- voice->Send[i].OutBuffer = Slot->WetBuffer;
- }
+ {
+ slot->Params.RoomRolloff = 0.0f;
+ slot->Params.DecayTime = 0.0f;
+ slot->Params.DecayLFRatio = 0.0f;
+ slot->Params.DecayHFRatio = 0.0f;
+ slot->Params.DecayHFLimit = AL_FALSE;
+ slot->Params.AirAbsorptionGainHF = 1.0f;
+ }
- /* Calculate the stepping value */
- Channels = FmtMono;
- BufferListItem = ATOMIC_LOAD(&ALSource->queue);
- while(BufferListItem != NULL)
- {
- ALbuffer *ALBuffer;
- if((ALBuffer=BufferListItem->buffer) != NULL)
+ state = props->State;
+
+ if(state == slot->Params.EffectState)
{
- Pitch = Pitch * ALBuffer->Frequency / Frequency;
- if(Pitch > (ALfloat)MAX_PITCH)
- voice->Step = MAX_PITCH<<FRACTIONBITS;
- else
- voice->Step = maxi(fastf2i(Pitch*FRACTIONONE + 0.5f), 1);
- BsincPrepare(voice->Step, &voice->SincState);
+ /* If the effect state is the same as current, we can decrement its
+ * count safely to remove it from the update object (it can't reach
+ * 0 refs since the current params also hold a reference).
+ */
+ DecrementRef(&state->Ref);
+ props->State = NULL;
+ }
+ else
+ {
+ /* Otherwise, replace it and send off the old one with a release
+ * event.
+ */
+ AsyncEvent evt = ASYNC_EVENT(EventType_ReleaseEffectState);
+ evt.u.EffectState = slot->Params.EffectState;
- Channels = ALBuffer->FmtChannels;
- break;
+ slot->Params.EffectState = state;
+ props->State = NULL;
+
+ if(LIKELY(ll_ringbuffer_write(context->AsyncEvents, (const char*)&evt, 1) != 0))
+ alsem_post(&context->EventSem);
+ else
+ {
+ /* If writing the event failed, the queue was probably full.
+ * Store the old state in the property object where it can
+ * eventually be cleaned up sometime later (not ideal, but
+ * better than blocking or leaking).
+ */
+ props->State = evt.u.EffectState;
+ }
}
- BufferListItem = BufferListItem->next;
- }
- /* Calculate gains */
- DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
- DryGain *= ALSource->Direct.Gain * ListenerGain;
- DryGainHF = ALSource->Direct.GainHF;
- DryGainLF = ALSource->Direct.GainLF;
- for(i = 0;i < NumSends;i++)
- {
- WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
- WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
- WetGainHF[i] = ALSource->Send[i].GainHF;
- WetGainLF[i] = ALSource->Send[i].GainLF;
+ ATOMIC_REPLACE_HEAD(struct ALeffectslotProps*, &context->FreeEffectslotProps, props);
}
+ else
+ state = slot->Params.EffectState;
+
+ V(state,update)(context, slot, &slot->Params.EffectProps);
+ return true;
+}
+
+
+static const struct ChanMap MonoMap[1] = {
+ { FrontCenter, 0.0f, 0.0f }
+}, RearMap[2] = {
+ { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
+ { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
+}, QuadMap[4] = {
+ { FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
+ { BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
+ { BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
+}, X51Map[6] = {
+ { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
+ { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { SideLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
+ { SideRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
+}, X61Map[7] = {
+ { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
+ { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
+ { SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
+ { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
+}, X71Map[8] = {
+ { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
+ { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
+ { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
+ { SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
+ { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
+};
+
+static void CalcPanningAndFilters(ALvoice *voice, const ALfloat Azi, const ALfloat Elev,
+ const ALfloat Distance, const ALfloat Spread,
+ const ALfloat DryGain, const ALfloat DryGainHF,
+ const ALfloat DryGainLF, const ALfloat *WetGain,
+ const ALfloat *WetGainLF, const ALfloat *WetGainHF,
+ ALeffectslot **SendSlots, const ALbuffer *Buffer,
+ const struct ALvoiceProps *props, const ALlistener *Listener,
+ const ALCdevice *Device)
+{
+ struct ChanMap StereoMap[2] = {
+ { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
+ };
+ bool DirectChannels = props->DirectChannels;
+ const ALsizei NumSends = Device->NumAuxSends;
+ const ALuint Frequency = Device->Frequency;
+ const struct ChanMap *chans = NULL;
+ ALsizei num_channels = 0;
+ bool isbformat = false;
+ ALfloat downmix_gain = 1.0f;
+ ALsizei c, i;
- switch(Channels)
+ switch(Buffer->FmtChannels)
{
case FmtMono:
chans = MonoMap;
num_channels = 1;
+ /* Mono buffers are never played direct. */
+ DirectChannels = false;
break;
case FmtStereo:
- /* HACK: Place the stereo channels at +/-90 degrees when using non-
- * HRTF stereo output. This helps reduce the "monoization" caused
- * by them panning towards the center. */
- if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
- chans = StereoWideMap;
- else
- chans = StereoMap;
+ /* Convert counter-clockwise to clockwise. */
+ StereoMap[0].angle = -props->StereoPan[0];
+ StereoMap[1].angle = -props->StereoPan[1];
+
+ chans = StereoMap;
num_channels = 2;
+ downmix_gain = 1.0f / 2.0f;
break;
case FmtRear:
chans = RearMap;
num_channels = 2;
+ downmix_gain = 1.0f / 2.0f;
break;
case FmtQuad:
chans = QuadMap;
num_channels = 4;
+ downmix_gain = 1.0f / 4.0f;
break;
case FmtX51:
chans = X51Map;
num_channels = 6;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 5.0f;
break;
case FmtX61:
chans = X61Map;
num_channels = 7;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 6.0f;
break;
case FmtX71:
chans = X71Map;
num_channels = 8;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 7.0f;
break;
case FmtBFormat2D:
num_channels = 3;
- isbformat = AL_TRUE;
- DirectChannels = AL_FALSE;
+ isbformat = true;
+ DirectChannels = false;
break;
case FmtBFormat3D:
num_channels = 4;
- isbformat = AL_TRUE;
- DirectChannels = AL_FALSE;
+ isbformat = true;
+ DirectChannels = false;
break;
}
+ for(c = 0;c < num_channels;c++)
+ {
+ memset(&voice->Direct.Params[c].Hrtf.Target, 0,
+ sizeof(voice->Direct.Params[c].Hrtf.Target));
+ ClearArray(voice->Direct.Params[c].Gains.Target);
+ }
+ for(i = 0;i < NumSends;i++)
+ {
+ for(c = 0;c < num_channels;c++)
+ ClearArray(voice->Send[i].Params[c].Gains.Target);
+ }
+
+ voice->Flags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
if(isbformat)
{
- ALfloat N[3], V[3], U[3];
- aluMatrixf matrix;
- ALfloat scale;
-
- /* AT then UP */
- N[0] = ALSource->Orientation[0][0];
- N[1] = ALSource->Orientation[0][1];
- N[2] = ALSource->Orientation[0][2];
- aluNormalize(N);
- V[0] = ALSource->Orientation[1][0];
- V[1] = ALSource->Orientation[1][1];
- V[2] = ALSource->Orientation[1][2];
- aluNormalize(V);
- if(!Relative)
+ /* Special handling for B-Format sources. */
+
+ if(Distance > FLT_EPSILON)
+ {
+ /* Panning a B-Format sound toward some direction is easy. Just pan
+ * the first (W) channel as a normal mono sound and silence the
+ * others.
+ */
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ ALfloat mdist = Distance * Listener->Params.MetersPerUnit;
+ ALfloat w0 = SPEEDOFSOUNDMETRESPERSEC /
+ (mdist * (ALfloat)Device->Frequency);
+ ALfloat w1 = SPEEDOFSOUNDMETRESPERSEC /
+ (Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
+ /* Clamp w0 for really close distances, to prevent excessive
+ * bass.
+ */
+ w0 = minf(w0, w1*4.0f);
+
+ /* Only need to adjust the first channel of a B-Format source. */
+ NfcFilterAdjust(&voice->Direct.Params[0].NFCtrlFilter, w0);
+
+ for(i = 0;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = Device->NumChannelsPerOrder[i];
+ voice->Flags |= VOICE_HAS_NFC;
+ }
+
+ /* A scalar of 1.5 for plain stereo results in +/-60 degrees being
+ * moved to +/-90 degrees for direct right and left speaker
+ * responses.
+ */
+ CalcAngleCoeffs((Device->Render_Mode==StereoPair) ? ScaleAzimuthFront(Azi, 1.5f) : Azi,
+ Elev, Spread, coeffs);
+
+ /* NOTE: W needs to be scaled by sqrt(2) due to FuMa normalization. */
+ ComputePanGains(&Device->Dry, coeffs, DryGain*SQRTF_2,
+ voice->Direct.Params[0].Gains.Target);
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels, coeffs,
+ WetGain[i]*SQRTF_2, voice->Send[i].Params[0].Gains.Target
+ );
+ }
+ }
+ else
+ {
+ /* Local B-Format sources have their XYZ channels rotated according
+ * to the orientation.
+ */
+ ALfloat N[3], V[3], U[3];
+ aluMatrixf matrix;
+
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
+ * is what we want for FOA input. The first channel may have
+ * been previously re-adjusted if panned, so reset it.
+ */
+ NfcFilterAdjust(&voice->Direct.Params[0].NFCtrlFilter, 0.0f);
+
+ voice->Direct.ChannelsPerOrder[0] = 1;
+ voice->Direct.ChannelsPerOrder[1] = mini(voice->Direct.Channels-1, 3);
+ for(i = 2;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = 0;
+ voice->Flags |= VOICE_HAS_NFC;
+ }
+
+ /* AT then UP */
+ N[0] = props->Orientation[0][0];
+ N[1] = props->Orientation[0][1];
+ N[2] = props->Orientation[0][2];
+ aluNormalize(N);
+ V[0] = props->Orientation[1][0];
+ V[1] = props->Orientation[1][1];
+ V[2] = props->Orientation[1][2];
+ aluNormalize(V);
+ if(!props->HeadRelative)
+ {
+ const aluMatrixf *lmatrix = &Listener->Params.Matrix;
+ aluMatrixfFloat3(N, 0.0f, lmatrix);
+ aluMatrixfFloat3(V, 0.0f, lmatrix);
+ }
+ /* Build and normalize right-vector */
+ aluCrossproduct(N, V, U);
+ aluNormalize(U);
+
+ /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
+ * matrix is transposed, for the inputs to align on the rows and
+ * outputs on the columns.
+ */
+ aluMatrixfSet(&matrix,
+ // ACN0 ACN1 ACN2 ACN3
+ SQRTF_2, 0.0f, 0.0f, 0.0f, // Ambi W
+ 0.0f, -N[0]*SQRTF_3, N[1]*SQRTF_3, -N[2]*SQRTF_3, // Ambi X
+ 0.0f, U[0]*SQRTF_3, -U[1]*SQRTF_3, U[2]*SQRTF_3, // Ambi Y
+ 0.0f, -V[0]*SQRTF_3, V[1]*SQRTF_3, -V[2]*SQRTF_3 // Ambi Z
+ );
+
+ voice->Direct.Buffer = Device->FOAOut.Buffer;
+ voice->Direct.Channels = Device->FOAOut.NumChannels;
+ for(c = 0;c < num_channels;c++)
+ ComputePanGains(&Device->FOAOut, matrix.m[c], DryGain,
+ voice->Direct.Params[c].Gains.Target);
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ {
+ for(c = 0;c < num_channels;c++)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ matrix.m[c], WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
+ }
+ }
+ else if(DirectChannels)
+ {
+ /* Direct source channels always play local. Skip the virtual channels
+ * and write inputs to the matching real outputs.
+ */
+ voice->Direct.Buffer = Device->RealOut.Buffer;
+ voice->Direct.Channels = Device->RealOut.NumChannels;
+
+ for(c = 0;c < num_channels;c++)
{
- const aluMatrixd *lmatrix = &ALContext->Listener->Params.Matrix;
- aluMatrixdFloat3(N, 0.0f, lmatrix);
- aluMatrixdFloat3(V, 0.0f, lmatrix);
+ int idx = GetChannelIdxByName(&Device->RealOut, chans[c].channel);
+ if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
}
- /* Build and normalize right-vector */
- aluCrossproduct(N, V, U);
- aluNormalize(U);
-
- /* Build a rotate + conversion matrix (B-Format -> N3D), and include
- * scaling for first-order content. */
- scale = Device->AmbiScale * 1.732050808f;
- aluMatrixfSet(&matrix,
- 1.414213562f, 0.0f, 0.0f, 0.0f,
- 0.0f, -N[0]*scale, N[1]*scale, -N[2]*scale,
- 0.0f, U[0]*scale, -U[1]*scale, U[2]*scale,
- 0.0f, -V[0]*scale, V[1]*scale, -V[2]*scale
- );
+ /* Auxiliary sends still use normal channel panning since they mix to
+ * B-Format, which can't channel-match.
+ */
for(c = 0;c < num_channels;c++)
{
- MixGains *gains = voice->Direct.Gains[c];
- ALfloat Target[MAX_OUTPUT_CHANNELS];
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+ CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
- ComputeBFormatGains(Device, matrix.m[c], DryGain, Target);
- for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
- gains[i].Target = Target[i];
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
+ }
}
- UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
-
- voice->IsHrtf = AL_FALSE;
+ }
+ else if(Device->Render_Mode == HrtfRender)
+ {
+ /* Full HRTF rendering. Skip the virtual channels and render to the
+ * real outputs.
+ */
+ voice->Direct.Buffer = Device->RealOut.Buffer;
+ voice->Direct.Channels = Device->RealOut.NumChannels;
- for(i = 0;i < NumSends;i++)
+ if(Distance > FLT_EPSILON)
{
- /* Only the first channel of B-Format buffers (W) goes to auxiliary
- * sends. It also needs to be scaled by sqrt(2) to account for the
- * signal being scaled by sqrt(1/2).
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+
+ /* Get the HRIR coefficients and delays just once, for the given
+ * source direction.
*/
- voice->Send[i].Gains[0].Target = WetGain[i] * 1.414213562f;
+ GetHrtfCoeffs(Device->HrtfHandle, Elev, Azi, Spread,
+ voice->Direct.Params[0].Hrtf.Target.Coeffs,
+ voice->Direct.Params[0].Hrtf.Target.Delay);
+ voice->Direct.Params[0].Hrtf.Target.Gain = DryGain * downmix_gain;
+
+ /* Remaining channels use the same results as the first. */
for(c = 1;c < num_channels;c++)
- voice->Send[i].Gains[c].Target = 0.0f;
- UpdateWetStepping(&voice->Send[i], num_channels, (voice->Send[i].Moving ? 64 : 0));
- voice->Send[i].Moving = AL_TRUE;
+ {
+ /* Skip LFE */
+ if(chans[c].channel != LFE)
+ voice->Direct.Params[c].Hrtf.Target = voice->Direct.Params[0].Hrtf.Target;
+ }
+
+ /* Calculate the directional coefficients once, which apply to all
+ * input channels of the source sends.
+ */
+ CalcAngleCoeffs(Azi, Elev, Spread, coeffs);
+
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ for(c = 0;c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel != LFE)
+ ComputePanningGainsBF(Slot->ChanMap,
+ Slot->NumChannels, coeffs, WetGain[i] * downmix_gain,
+ voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
}
- }
- else
- {
- if(DirectChannels)
+ else
{
- if(Device->Hrtf)
+ /* Local sources on HRTF play with each channel panned to its
+ * relative location around the listener, providing "virtual
+ * speaker" responses.
+ */
+ for(c = 0;c < num_channels;c++)
{
- /* DirectChannels with HRTF enabled. Skip the virtual channels
- * and write FrontLeft and FrontRight inputs to the first and
- * second outputs.
- */
- voice->Direct.OutBuffer += voice->Direct.OutChannels;
- voice->Direct.OutChannels = 2;
- for(c = 0;c < num_channels;c++)
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+
+ if(chans[c].channel == LFE)
{
- MixGains *gains = voice->Direct.Gains[c];
+ /* Skip LFE */
+ continue;
+ }
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- gains[j].Target = 0.0f;
+ /* Get the HRIR coefficients and delays for this channel
+ * position.
+ */
+ GetHrtfCoeffs(Device->HrtfHandle,
+ chans[c].elevation, chans[c].angle, Spread,
+ voice->Direct.Params[c].Hrtf.Target.Coeffs,
+ voice->Direct.Params[c].Hrtf.Target.Delay
+ );
+ voice->Direct.Params[c].Hrtf.Target.Gain = DryGain;
- if(chans[c].channel == FrontLeft)
- gains[0].Target = DryGain;
- else if(chans[c].channel == FrontRight)
- gains[1].Target = DryGain;
+ /* Normal panning for auxiliary sends. */
+ CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
+
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
}
}
- else for(c = 0;c < num_channels;c++)
+ }
+
+ voice->Flags |= VOICE_HAS_HRTF;
+ }
+ else
+ {
+ /* Non-HRTF rendering. Use normal panning to the output. */
+
+ if(Distance > FLT_EPSILON)
+ {
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+ ALfloat w0 = 0.0f;
+
+ /* Calculate NFC filter coefficient if needed. */
+ if(Device->AvgSpeakerDist > 0.0f)
{
- MixGains *gains = voice->Direct.Gains[c];
- int idx;
+ ALfloat mdist = Distance * Listener->Params.MetersPerUnit;
+ ALfloat w1 = SPEEDOFSOUNDMETRESPERSEC /
+ (Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
+ w0 = SPEEDOFSOUNDMETRESPERSEC /
+ (mdist * (ALfloat)Device->Frequency);
+ /* Clamp w0 for really close distances, to prevent excessive
+ * bass.
+ */
+ w0 = minf(w0, w1*4.0f);
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- gains[j].Target = 0.0f;
- if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
- gains[idx].Target = DryGain;
+ /* Adjust NFC filters. */
+ for(c = 0;c < num_channels;c++)
+ NfcFilterAdjust(&voice->Direct.Params[c].NFCtrlFilter, w0);
+
+ for(i = 0;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = Device->NumChannelsPerOrder[i];
+ voice->Flags |= VOICE_HAS_NFC;
}
- UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
- voice->IsHrtf = AL_FALSE;
- }
- else if(Device->Hrtf_Mode == FullHrtf)
- {
- /* Full HRTF rendering. Skip the virtual channels and render each
- * input channel to the real outputs.
+ /* Calculate the directional coefficients once, which apply to all
+ * input channels.
*/
- voice->Direct.OutBuffer += voice->Direct.OutChannels;
- voice->Direct.OutChannels = 2;
+ CalcAngleCoeffs((Device->Render_Mode==StereoPair) ? ScaleAzimuthFront(Azi, 1.5f) : Azi,
+ Elev, Spread, coeffs);
+
for(c = 0;c < num_channels;c++)
{
+ /* Special-case LFE */
if(chans[c].channel == LFE)
{
- /* Skip LFE */
- voice->Direct.Hrtf[c].Params.Delay[0] = 0;
- voice->Direct.Hrtf[c].Params.Delay[1] = 0;
- for(i = 0;i < HRIR_LENGTH;i++)
+ if(Device->Dry.Buffer == Device->RealOut.Buffer)
{
- voice->Direct.Hrtf[c].Params.Coeffs[i][0] = 0.0f;
- voice->Direct.Hrtf[c].Params.Coeffs[i][1] = 0.0f;
+ int idx = GetChannelIdxByName(&Device->RealOut, chans[c].channel);
+ if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
}
+ continue;
}
- else
- {
- /* Get the static HRIR coefficients and delays for this
- * channel. */
- GetLerpedHrtfCoeffs(Device->Hrtf,
- chans[c].elevation, chans[c].angle, 1.0f, DryGain,
- voice->Direct.Hrtf[c].Params.Coeffs,
- voice->Direct.Hrtf[c].Params.Delay
- );
- }
+
+ ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain,
+ voice->Direct.Params[c].Gains.Target);
}
- voice->Direct.Counter = 0;
- voice->Direct.Moving = AL_TRUE;
- voice->IsHrtf = AL_TRUE;
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ for(c = 0;c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel != LFE)
+ ComputePanningGainsBF(Slot->ChanMap,
+ Slot->NumChannels, coeffs, WetGain[i] * downmix_gain,
+ voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
}
else
{
- /* Basic or no HRTF rendering. Use normal panning to the output. */
+ ALfloat w0 = 0.0f;
+
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* If the source distance is 0, set w0 to w1 to act as a pass-
+ * through. We still want to pass the signal through the
+ * filters so they keep an appropriate history, in case the
+ * source moves away from the listener.
+ */
+ w0 = SPEEDOFSOUNDMETRESPERSEC /
+ (Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
+
+ for(c = 0;c < num_channels;c++)
+ NfcFilterAdjust(&voice->Direct.Params[c].NFCtrlFilter, w0);
+
+ for(i = 0;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = Device->NumChannelsPerOrder[i];
+ voice->Flags |= VOICE_HAS_NFC;
+ }
+
for(c = 0;c < num_channels;c++)
{
- MixGains *gains = voice->Direct.Gains[c];
- ALfloat Target[MAX_OUTPUT_CHANNELS];
+ ALfloat coeffs[MAX_AMBI_COEFFS];
/* Special-case LFE */
if(chans[c].channel == LFE)
{
- int idx;
- for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
- gains[i].Target = 0.0f;
- if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
- gains[idx].Target = DryGain;
+ if(Device->Dry.Buffer == Device->RealOut.Buffer)
+ {
+ int idx = GetChannelIdxByName(&Device->RealOut, chans[c].channel);
+ if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
+ }
continue;
}
- ComputeAngleGains(Device, chans[c].angle, chans[c].elevation, DryGain, Target);
- for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
- gains[i].Target = Target[i];
- }
- UpdateDryStepping(&voice->Direct, num_channels, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
+ CalcAngleCoeffs(
+ (Device->Render_Mode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f)
+ : chans[c].angle,
+ chans[c].elevation, Spread, coeffs
+ );
- voice->IsHrtf = AL_FALSE;
- }
- for(i = 0;i < NumSends;i++)
- {
- for(c = 0;c < num_channels;c++)
- voice->Send[i].Gains[c].Target = WetGain[i];
- UpdateWetStepping(&voice->Send[i], num_channels, (voice->Send[i].Moving ? 64 : 0));
- voice->Send[i].Moving = AL_TRUE;
+ ComputePanGains(&Device->Dry, coeffs, DryGain,
+ voice->Direct.Params[c].Gains.Target);
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
}
}
{
- ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
- ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
- DryGainHF = maxf(DryGainHF, 0.0001f);
- DryGainLF = maxf(DryGainLF, 0.0001f);
- for(c = 0;c < num_channels;c++)
+ ALfloat hfScale = props->Direct.HFReference / Frequency;
+ ALfloat lfScale = props->Direct.LFReference / Frequency;
+ ALfloat gainHF = maxf(DryGainHF, 0.001f); /* Limit -60dB */
+ ALfloat gainLF = maxf(DryGainLF, 0.001f);
+
+ voice->Direct.FilterType = AF_None;
+ if(gainHF != 1.0f) voice->Direct.FilterType |= AF_LowPass;
+ if(gainLF != 1.0f) voice->Direct.FilterType |= AF_HighPass;
+ BiquadFilter_setParams(
+ &voice->Direct.Params[0].LowPass, BiquadType_HighShelf,
+ gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
+ );
+ BiquadFilter_setParams(
+ &voice->Direct.Params[0].HighPass, BiquadType_LowShelf,
+ gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
+ );
+ for(c = 1;c < num_channels;c++)
{
- voice->Direct.Filters[c].ActiveType = AF_None;
- if(DryGainHF != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
- if(DryGainLF != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf,
- DryGainHF, hfscale, calc_rcpQ_from_slope(DryGainHF, 0.75f)
- );
- ALfilterState_setParams(
- &voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf,
- DryGainLF, lfscale, calc_rcpQ_from_slope(DryGainLF, 0.75f)
- );
+ BiquadFilter_copyParams(&voice->Direct.Params[c].LowPass,
+ &voice->Direct.Params[0].LowPass);
+ BiquadFilter_copyParams(&voice->Direct.Params[c].HighPass,
+ &voice->Direct.Params[0].HighPass);
}
}
for(i = 0;i < NumSends;i++)
{
- ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
- ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
- WetGainHF[i] = maxf(WetGainHF[i], 0.0001f);
- WetGainLF[i] = maxf(WetGainLF[i], 0.0001f);
- for(c = 0;c < num_channels;c++)
+ ALfloat hfScale = props->Send[i].HFReference / Frequency;
+ ALfloat lfScale = props->Send[i].LFReference / Frequency;
+ ALfloat gainHF = maxf(WetGainHF[i], 0.001f);
+ ALfloat gainLF = maxf(WetGainLF[i], 0.001f);
+
+ voice->Send[i].FilterType = AF_None;
+ if(gainHF != 1.0f) voice->Send[i].FilterType |= AF_LowPass;
+ if(gainLF != 1.0f) voice->Send[i].FilterType |= AF_HighPass;
+ BiquadFilter_setParams(
+ &voice->Send[i].Params[0].LowPass, BiquadType_HighShelf,
+ gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
+ );
+ BiquadFilter_setParams(
+ &voice->Send[i].Params[0].HighPass, BiquadType_LowShelf,
+ gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
+ );
+ for(c = 1;c < num_channels;c++)
{
- voice->Send[i].Filters[c].ActiveType = AF_None;
- if(WetGainHF[i] != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
- if(WetGainLF[i] != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf,
- WetGainHF[i], hfscale, calc_rcpQ_from_slope(WetGainHF[i], 0.75f)
- );
- ALfilterState_setParams(
- &voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf,
- WetGainLF[i], lfscale, calc_rcpQ_from_slope(WetGainLF[i], 0.75f)
- );
+ BiquadFilter_copyParams(&voice->Send[i].Params[c].LowPass,
+ &voice->Send[i].Params[0].LowPass);
+ BiquadFilter_copyParams(&voice->Send[i].Params[c].HighPass,
+ &voice->Send[i].Params[0].HighPass);
}
}
}
-ALvoid CalcSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
+static void CalcNonAttnSourceParams(ALvoice *voice, const struct ALvoiceProps *props, const ALbuffer *ALBuffer, const ALCcontext *ALContext)
{
- ALCdevice *Device = ALContext->Device;
- aluVector Position, Velocity, Direction, SourceToListener;
- ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
- ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
- ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
- ALfloat DopplerFactor, SpeedOfSound;
- ALfloat AirAbsorptionFactor;
- ALfloat RoomAirAbsorption[MAX_SENDS];
- ALbufferlistitem *BufferListItem;
- ALfloat Attenuation;
- ALfloat RoomAttenuation[MAX_SENDS];
- ALfloat MetersPerUnit;
- ALfloat RoomRolloffBase;
- ALfloat RoomRolloff[MAX_SENDS];
- ALfloat DecayDistance[MAX_SENDS];
- ALfloat DryGain;
- ALfloat DryGainHF;
- ALfloat DryGainLF;
- ALboolean DryGainHFAuto;
+ const ALCdevice *Device = ALContext->Device;
+ const ALlistener *Listener = ALContext->Listener;
+ ALfloat DryGain, DryGainHF, DryGainLF;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat WetGainLF[MAX_SENDS];
- ALboolean WetGainAuto;
- ALboolean WetGainHFAuto;
+ ALeffectslot *SendSlots[MAX_SENDS];
ALfloat Pitch;
- ALuint Frequency;
- ALint NumSends;
- ALint i, j;
+ ALsizei i;
- DryGainHF = 1.0f;
- DryGainLF = 1.0f;
- for(i = 0;i < MAX_SENDS;i++)
+ voice->Direct.Buffer = Device->Dry.Buffer;
+ voice->Direct.Channels = Device->Dry.NumChannels;
+ for(i = 0;i < Device->NumAuxSends;i++)
{
- WetGainHF[i] = 1.0f;
- WetGainLF[i] = 1.0f;
+ SendSlots[i] = props->Send[i].Slot;
+ if(!SendSlots[i] && i == 0)
+ SendSlots[i] = ALContext->DefaultSlot;
+ if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
+ {
+ SendSlots[i] = NULL;
+ voice->Send[i].Buffer = NULL;
+ voice->Send[i].Channels = 0;
+ }
+ else
+ {
+ voice->Send[i].Buffer = SendSlots[i]->WetBuffer;
+ voice->Send[i].Channels = SendSlots[i]->NumChannels;
+ }
}
- /* Get context/device properties */
- DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
- SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
- NumSends = Device->NumAuxSends;
- Frequency = Device->Frequency;
-
- /* Get listener properties */
- ListenerGain = ALContext->Listener->Gain;
- MetersPerUnit = ALContext->Listener->MetersPerUnit;
-
- /* Get source properties */
- SourceVolume = ALSource->Gain;
- MinVolume = ALSource->MinGain;
- MaxVolume = ALSource->MaxGain;
- Pitch = ALSource->Pitch;
- Position = ALSource->Position;
- Direction = ALSource->Direction;
- Velocity = ALSource->Velocity;
- MinDist = ALSource->RefDistance;
- MaxDist = ALSource->MaxDistance;
- Rolloff = ALSource->RollOffFactor;
- InnerAngle = ALSource->InnerAngle;
- OuterAngle = ALSource->OuterAngle;
- AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
- DryGainHFAuto = ALSource->DryGainHFAuto;
- WetGainAuto = ALSource->WetGainAuto;
- WetGainHFAuto = ALSource->WetGainHFAuto;
- RoomRolloffBase = ALSource->RoomRolloffFactor;
-
- voice->Direct.OutBuffer = Device->DryBuffer;
- voice->Direct.OutChannels = Device->NumChannels;
- for(i = 0;i < NumSends;i++)
+ /* Calculate the stepping value */
+ Pitch = (ALfloat)ALBuffer->Frequency/(ALfloat)Device->Frequency * props->Pitch;
+ if(Pitch > (ALfloat)MAX_PITCH)
+ voice->Step = MAX_PITCH<<FRACTIONBITS;
+ else
+ voice->Step = maxi(fastf2i(Pitch * FRACTIONONE), 1);
+ if(props->Resampler == BSinc24Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc24);
+ else if(props->Resampler == BSinc12Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc12);
+ voice->Resampler = SelectResampler(props->Resampler);
+
+ /* Calculate gains */
+ DryGain = clampf(props->Gain, props->MinGain, props->MaxGain);
+ DryGain *= props->Direct.Gain * Listener->Params.Gain;
+ DryGain = minf(DryGain, GAIN_MIX_MAX);
+ DryGainHF = props->Direct.GainHF;
+ DryGainLF = props->Direct.GainLF;
+ for(i = 0;i < Device->NumAuxSends;i++)
{
- ALeffectslot *Slot = ALSource->Send[i].Slot;
+ WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
+ WetGain[i] *= props->Send[i].Gain * Listener->Params.Gain;
+ WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
+ WetGainHF[i] = props->Send[i].GainHF;
+ WetGainLF[i] = props->Send[i].GainLF;
+ }
+
+ CalcPanningAndFilters(voice, 0.0f, 0.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF, WetGain,
+ WetGainLF, WetGainHF, SendSlots, ALBuffer, props, Listener, Device);
+}
- if(!Slot && i == 0)
- Slot = Device->DefaultSlot;
- if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
+static void CalcAttnSourceParams(ALvoice *voice, const struct ALvoiceProps *props, const ALbuffer *ALBuffer, const ALCcontext *ALContext)
+{
+ const ALCdevice *Device = ALContext->Device;
+ const ALlistener *Listener = ALContext->Listener;
+ const ALsizei NumSends = Device->NumAuxSends;
+ aluVector Position, Velocity, Direction, SourceToListener;
+ ALfloat Distance, ClampedDist, DopplerFactor;
+ ALeffectslot *SendSlots[MAX_SENDS];
+ ALfloat RoomRolloff[MAX_SENDS];
+ ALfloat DecayDistance[MAX_SENDS];
+ ALfloat DecayLFDistance[MAX_SENDS];
+ ALfloat DecayHFDistance[MAX_SENDS];
+ ALfloat DryGain, DryGainHF, DryGainLF;
+ ALfloat WetGain[MAX_SENDS];
+ ALfloat WetGainHF[MAX_SENDS];
+ ALfloat WetGainLF[MAX_SENDS];
+ bool directional;
+ ALfloat ev, az;
+ ALfloat spread;
+ ALfloat Pitch;
+ ALint i;
+
+ /* Set mixing buffers and get send parameters. */
+ voice->Direct.Buffer = Device->Dry.Buffer;
+ voice->Direct.Channels = Device->Dry.NumChannels;
+ for(i = 0;i < NumSends;i++)
+ {
+ SendSlots[i] = props->Send[i].Slot;
+ if(!SendSlots[i] && i == 0)
+ SendSlots[i] = ALContext->DefaultSlot;
+ if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
{
- Slot = NULL;
+ SendSlots[i] = NULL;
RoomRolloff[i] = 0.0f;
DecayDistance[i] = 0.0f;
- RoomAirAbsorption[i] = 1.0f;
+ DecayLFDistance[i] = 0.0f;
+ DecayHFDistance[i] = 0.0f;
}
- else if(Slot->AuxSendAuto)
+ else if(SendSlots[i]->Params.AuxSendAuto)
{
- RoomRolloff[i] = RoomRolloffBase;
- if(IsReverbEffect(Slot->EffectType))
- {
- RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
- DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
- SPEEDOFSOUNDMETRESPERSEC;
- RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
- }
- else
+ RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
+ /* Calculate the distances to where this effect's decay reaches
+ * -60dB.
+ */
+ DecayDistance[i] = SendSlots[i]->Params.DecayTime *
+ Listener->Params.ReverbSpeedOfSound;
+ DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio;
+ DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
+ if(SendSlots[i]->Params.DecayHFLimit)
{
- DecayDistance[i] = 0.0f;
- RoomAirAbsorption[i] = 1.0f;
+ ALfloat airAbsorption = SendSlots[i]->Params.AirAbsorptionGainHF;
+ if(airAbsorption < 1.0f)
+ {
+ /* Calculate the distance to where this effect's air
+ * absorption reaches -60dB, and limit the effect's HF
+ * decay distance (so it doesn't take any longer to decay
+ * than the air would allow).
+ */
+ ALfloat absorb_dist = log10f(REVERB_DECAY_GAIN) / log10f(airAbsorption);
+ DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]);
+ }
}
}
else
{
/* If the slot's auxiliary send auto is off, the data sent to the
* effect slot is the same as the dry path, sans filter effects */
- RoomRolloff[i] = Rolloff;
+ RoomRolloff[i] = props->RolloffFactor;
DecayDistance[i] = 0.0f;
- RoomAirAbsorption[i] = AIRABSORBGAINHF;
+ DecayLFDistance[i] = 0.0f;
+ DecayHFDistance[i] = 0.0f;
}
- if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
- voice->Send[i].OutBuffer = NULL;
+ if(!SendSlots[i])
+ {
+ voice->Send[i].Buffer = NULL;
+ voice->Send[i].Channels = 0;
+ }
else
- voice->Send[i].OutBuffer = Slot->WetBuffer;
+ {
+ voice->Send[i].Buffer = SendSlots[i]->WetBuffer;
+ voice->Send[i].Channels = SendSlots[i]->NumChannels;
+ }
}
/* Transform source to listener space (convert to head relative) */
- if(ALSource->HeadRelative == AL_FALSE)
+ aluVectorSet(&Position, props->Position[0], props->Position[1], props->Position[2], 1.0f);
+ aluVectorSet(&Direction, props->Direction[0], props->Direction[1], props->Direction[2], 0.0f);
+ aluVectorSet(&Velocity, props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f);
+ if(props->HeadRelative == AL_FALSE)
{
- const aluMatrixd *Matrix = &ALContext->Listener->Params.Matrix;
+ const aluMatrixf *Matrix = &Listener->Params.Matrix;
/* Transform source vectors */
- Position = aluMatrixdVector(Matrix, &Position);
- Velocity = aluMatrixdVector(Matrix, &Velocity);
- Direction = aluMatrixdVector(Matrix, &Direction);
+ Position = aluMatrixfVector(Matrix, &Position);
+ Velocity = aluMatrixfVector(Matrix, &Velocity);
+ Direction = aluMatrixfVector(Matrix, &Direction);
}
else
{
- const aluVector *lvelocity = &ALContext->Listener->Params.Velocity;
+ const aluVector *lvelocity = &Listener->Params.Velocity;
/* Offset the source velocity to be relative of the listener velocity */
Velocity.v[0] += lvelocity->v[0];
Velocity.v[1] += lvelocity->v[1];
Velocity.v[2] += lvelocity->v[2];
}
- aluNormalize(Direction.v);
+ directional = aluNormalize(Direction.v) > 0.0f;
SourceToListener.v[0] = -Position.v[0];
SourceToListener.v[1] = -Position.v[1];
SourceToListener.v[2] = -Position.v[2];
SourceToListener.v[3] = 0.0f;
Distance = aluNormalize(SourceToListener.v);
+ /* Initial source gain */
+ DryGain = props->Gain;
+ DryGainHF = 1.0f;
+ DryGainLF = 1.0f;
+ for(i = 0;i < NumSends;i++)
+ {
+ WetGain[i] = props->Gain;
+ WetGainHF[i] = 1.0f;
+ WetGainLF[i] = 1.0f;
+ }
+
/* Calculate distance attenuation */
ClampedDist = Distance;
- Attenuation = 1.0f;
- for(i = 0;i < NumSends;i++)
- RoomAttenuation[i] = 1.0f;
- switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
- ALContext->DistanceModel)
+ switch(Listener->Params.SourceDistanceModel ?
+ props->DistanceModel : Listener->Params.DistanceModel)
{
case InverseDistanceClamped:
- ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
- if(MaxDist < MinDist)
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance)
break;
/*fall-through*/
case InverseDistance:
- if(MinDist > 0.0f)
+ if(!(props->RefDistance > 0.0f))
+ ClampedDist = props->RefDistance;
+ else
{
- ALfloat dist = lerp(MinDist, ClampedDist, Rolloff);
- if(dist > 0.0f) Attenuation = MinDist / dist;
+ ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
+ if(dist > 0.0f) DryGain *= props->RefDistance / dist;
for(i = 0;i < NumSends;i++)
{
- dist = lerp(MinDist, ClampedDist, RoomRolloff[i]);
- if(dist > 0.0f) RoomAttenuation[i] = MinDist / dist;
+ dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
+ if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
}
}
break;
case LinearDistanceClamped:
- ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
- if(MaxDist < MinDist)
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance)
break;
/*fall-through*/
case LinearDistance:
- if(MaxDist != MinDist)
+ if(!(props->MaxDistance != props->RefDistance))
+ ClampedDist = props->RefDistance;
+ else
{
- Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
- Attenuation = maxf(Attenuation, 0.0f);
+ ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
+ (props->MaxDistance-props->RefDistance);
+ DryGain *= maxf(1.0f - attn, 0.0f);
for(i = 0;i < NumSends;i++)
{
- RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
- RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
+ attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
+ (props->MaxDistance-props->RefDistance);
+ WetGain[i] *= maxf(1.0f - attn, 0.0f);
}
}
break;
case ExponentDistanceClamped:
- ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
- if(MaxDist < MinDist)
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance)
break;
/*fall-through*/
case ExponentDistance:
- if(ClampedDist > 0.0f && MinDist > 0.0f)
+ if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
+ ClampedDist = props->RefDistance;
+ else
{
- Attenuation = powf(ClampedDist/MinDist, -Rolloff);
+ DryGain *= powf(ClampedDist/props->RefDistance, -props->RolloffFactor);
for(i = 0;i < NumSends;i++)
- RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
+ WetGain[i] *= powf(ClampedDist/props->RefDistance, -RoomRolloff[i]);
}
break;
case DisableDistance:
- ClampedDist = MinDist;
+ ClampedDist = props->RefDistance;
break;
}
- /* Source Gain + Attenuation */
- DryGain = SourceVolume * Attenuation;
- for(i = 0;i < NumSends;i++)
- WetGain[i] = SourceVolume * RoomAttenuation[i];
-
- /* Distance-based air absorption */
- if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
+ /* Calculate directional soundcones */
+ if(directional && props->InnerAngle < 360.0f)
{
- ALfloat meters = (ClampedDist-MinDist) * MetersPerUnit;
- DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
- for(i = 0;i < NumSends;i++)
- WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
- }
+ ALfloat ConeVolume;
+ ALfloat ConeHF;
+ ALfloat Angle;
- if(WetGainAuto)
- {
- ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
-
- /* Apply a decay-time transformation to the wet path, based on the
- * attenuation of the dry path.
- *
- * Using the apparent distance, based on the distance attenuation, the
- * initial decay of the reverb effect is calculated and applied to the
- * wet path.
- */
- for(i = 0;i < NumSends;i++)
+ Angle = acosf(aluDotproduct(&Direction, &SourceToListener));
+ Angle = RAD2DEG(Angle * ConeScale * 2.0f);
+ if(!(Angle > props->InnerAngle))
{
- if(DecayDistance[i] > 0.0f)
- WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
+ ConeVolume = 1.0f;
+ ConeHF = 1.0f;
+ }
+ else if(Angle < props->OuterAngle)
+ {
+ ALfloat scale = ( Angle-props->InnerAngle) /
+ (props->OuterAngle-props->InnerAngle);
+ ConeVolume = lerp(1.0f, props->OuterGain, scale);
+ ConeHF = lerp(1.0f, props->OuterGainHF, scale);
+ }
+ else
+ {
+ ConeVolume = props->OuterGain;
+ ConeHF = props->OuterGainHF;
}
- }
-
- /* Calculate directional soundcones */
- Angle = RAD2DEG(acosf(aluDotproduct(&Direction, &SourceToListener)) * ConeScale) * 2.0f;
- if(Angle > InnerAngle && Angle <= OuterAngle)
- {
- ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
- ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
- ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
- }
- else if(Angle > OuterAngle)
- {
- ConeVolume = ALSource->OuterGain;
- ConeHF = ALSource->OuterGainHF;
- }
- else
- {
- ConeVolume = 1.0f;
- ConeHF = 1.0f;
- }
- DryGain *= ConeVolume;
- if(WetGainAuto)
- {
- for(i = 0;i < NumSends;i++)
- WetGain[i] *= ConeVolume;
- }
- if(DryGainHFAuto)
- DryGainHF *= ConeHF;
- if(WetGainHFAuto)
- {
- for(i = 0;i < NumSends;i++)
- WetGainHF[i] *= ConeHF;
+ DryGain *= ConeVolume;
+ if(props->DryGainHFAuto)
+ DryGainHF *= ConeHF;
+ if(props->WetGainAuto)
+ {
+ for(i = 0;i < NumSends;i++)
+ WetGain[i] *= ConeVolume;
+ }
+ if(props->WetGainHFAuto)
+ {
+ for(i = 0;i < NumSends;i++)
+ WetGainHF[i] *= ConeHF;
+ }
}
- /* Clamp to Min/Max Gain */
- DryGain = clampf(DryGain, MinVolume, MaxVolume);
- for(i = 0;i < NumSends;i++)
- WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
-
/* Apply gain and frequency filters */
- DryGain *= ALSource->Direct.Gain * ListenerGain;
- DryGainHF *= ALSource->Direct.GainHF;
- DryGainLF *= ALSource->Direct.GainLF;
+ DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
+ DryGain = minf(DryGain*props->Direct.Gain*Listener->Params.Gain, GAIN_MIX_MAX);
+ DryGainHF *= props->Direct.GainHF;
+ DryGainLF *= props->Direct.GainLF;
for(i = 0;i < NumSends;i++)
{
- WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
- WetGainHF[i] *= ALSource->Send[i].GainHF;
- WetGainLF[i] *= ALSource->Send[i].GainLF;
+ WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
+ WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener->Params.Gain, GAIN_MIX_MAX);
+ WetGainHF[i] *= props->Send[i].GainHF;
+ WetGainLF[i] *= props->Send[i].GainLF;
}
- /* Calculate velocity-based doppler effect */
- if(DopplerFactor > 0.0f)
+ /* Distance-based air absorption and initial send decay. */
+ if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
{
- const aluVector *lvelocity = &ALContext->Listener->Params.Velocity;
- ALfloat VSS, VLS;
-
- if(SpeedOfSound < 1.0f)
+ ALfloat meters_base = (ClampedDist-props->RefDistance) * props->RolloffFactor *
+ Listener->Params.MetersPerUnit;
+ if(props->AirAbsorptionFactor > 0.0f)
{
- DopplerFactor *= 1.0f/SpeedOfSound;
- SpeedOfSound = 1.0f;
+ ALfloat hfattn = powf(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor);
+ DryGainHF *= hfattn;
+ for(i = 0;i < NumSends;i++)
+ WetGainHF[i] *= hfattn;
}
- VSS = aluDotproduct(&Velocity, &SourceToListener) * DopplerFactor;
- VLS = aluDotproduct(lvelocity, &SourceToListener) * DopplerFactor;
-
- Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
- clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
- }
-
- BufferListItem = ATOMIC_LOAD(&ALSource->queue);
- while(BufferListItem != NULL)
- {
- ALbuffer *ALBuffer;
- if((ALBuffer=BufferListItem->buffer) != NULL)
+ if(props->WetGainAuto)
{
- /* Calculate fixed-point stepping value, based on the pitch, buffer
- * frequency, and output frequency. */
- Pitch = Pitch * ALBuffer->Frequency / Frequency;
- if(Pitch > (ALfloat)MAX_PITCH)
- voice->Step = MAX_PITCH<<FRACTIONBITS;
- else
- voice->Step = maxi(fastf2i(Pitch*FRACTIONONE + 0.5f), 1);
- BsincPrepare(voice->Step, &voice->SincState);
+ /* Apply a decay-time transformation to the wet path, based on the
+ * source distance in meters. The initial decay of the reverb
+ * effect is calculated and applied to the wet path.
+ */
+ for(i = 0;i < NumSends;i++)
+ {
+ ALfloat gain, gainhf, gainlf;
- break;
+ if(!(DecayDistance[i] > 0.0f))
+ continue;
+
+ gain = powf(REVERB_DECAY_GAIN, meters_base/DecayDistance[i]);
+ WetGain[i] *= gain;
+ /* Yes, the wet path's air absorption is applied with
+ * WetGainAuto on, rather than WetGainHFAuto.
+ */
+ if(gain > 0.0f)
+ {
+ gainhf = powf(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i]);
+ WetGainHF[i] *= minf(gainhf / gain, 1.0f);
+ gainlf = powf(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i]);
+ WetGainLF[i] *= minf(gainlf / gain, 1.0f);
+ }
+ }
}
- BufferListItem = BufferListItem->next;
}
- if(Device->Hrtf_Mode == FullHrtf)
+
+ /* Initial source pitch */
+ Pitch = props->Pitch;
+
+ /* Calculate velocity-based doppler effect */
+ DopplerFactor = props->DopplerFactor * Listener->Params.DopplerFactor;
+ if(DopplerFactor > 0.0f)
{
- /* Full HRTF rendering. Skip the virtual channels and render to the
- * real outputs.
- */
- aluVector dir = {{ 0.0f, 0.0f, -1.0f, 0.0f }};
- ALfloat ev = 0.0f, az = 0.0f;
- ALfloat radius = ALSource->Radius;
- ALfloat dirfact = 1.0f;
+ const aluVector *lvelocity = &Listener->Params.Velocity;
+ const ALfloat SpeedOfSound = Listener->Params.SpeedOfSound;
+ ALfloat vss, vls;
- voice->Direct.OutBuffer += voice->Direct.OutChannels;
- voice->Direct.OutChannels = 2;
+ vss = aluDotproduct(&Velocity, &SourceToListener) * DopplerFactor;
+ vls = aluDotproduct(lvelocity, &SourceToListener) * DopplerFactor;
- if(Distance > FLT_EPSILON)
+ if(!(vls < SpeedOfSound))
{
- dir.v[0] = -SourceToListener.v[0];
- dir.v[1] = -SourceToListener.v[1];
- dir.v[2] = -SourceToListener.v[2] * ZScale;
-
- /* Calculate elevation and azimuth only when the source is not at
- * the listener. This prevents +0 and -0 Z from producing
- * inconsistent panning. Also, clamp Y in case FP precision errors
- * cause it to land outside of -1..+1. */
- ev = asinf(clampf(dir.v[1], -1.0f, 1.0f));
- az = atan2f(dir.v[0], -dir.v[2]);
- }
- if(radius > 0.0f)
- {
- if(radius >= Distance)
- dirfact *= Distance / radius * 0.5f;
- else
- dirfact *= 1.0f - (asinf(radius / Distance) / F_PI);
+ /* Listener moving away from the source at the speed of sound.
+ * Sound waves can't catch it.
+ */
+ Pitch = 0.0f;
}
-
- /* Check to see if the HRIR is already moving. */
- if(voice->Direct.Moving)
+ else if(!(vss < SpeedOfSound))
{
- ALfloat delta;
- delta = CalcFadeTime(voice->Direct.LastGain, DryGain,
- &voice->Direct.LastDir, &dir);
- /* If the delta is large enough, get the moving HRIR target
- * coefficients, target delays, steppping values, and counter.
+ /* Source moving toward the listener at the speed of sound. Sound
+ * waves bunch up to extreme frequencies.
*/
- if(delta > 0.000015f)
- {
- ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
- ev, az, dirfact, DryGain, delta, voice->Direct.Counter,
- voice->Direct.Hrtf[0].Params.Coeffs, voice->Direct.Hrtf[0].Params.Delay,
- voice->Direct.Hrtf[0].Params.CoeffStep, voice->Direct.Hrtf[0].Params.DelayStep
- );
- voice->Direct.Counter = counter;
- voice->Direct.LastGain = DryGain;
- voice->Direct.LastDir = dir;
- }
+ Pitch = HUGE_VALF;
}
else
{
- /* Get the initial (static) HRIR coefficients and delays. */
- GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, dirfact, DryGain,
- voice->Direct.Hrtf[0].Params.Coeffs,
- voice->Direct.Hrtf[0].Params.Delay);
- voice->Direct.Counter = 0;
- voice->Direct.Moving = AL_TRUE;
- voice->Direct.LastGain = DryGain;
- voice->Direct.LastDir = dir;
+ /* Source and listener movement is nominal. Calculate the proper
+ * doppler shift.
+ */
+ Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
}
-
- voice->IsHrtf = AL_TRUE;
}
+
+ /* Adjust pitch based on the buffer and output frequencies, and calculate
+ * fixed-point stepping value.
+ */
+ Pitch *= (ALfloat)ALBuffer->Frequency/(ALfloat)Device->Frequency;
+ if(Pitch > (ALfloat)MAX_PITCH)
+ voice->Step = MAX_PITCH<<FRACTIONBITS;
else
+ voice->Step = maxi(fastf2i(Pitch * FRACTIONONE), 1);
+ if(props->Resampler == BSinc24Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc24);
+ else if(props->Resampler == BSinc12Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc12);
+ voice->Resampler = SelectResampler(props->Resampler);
+
+ if(Distance > 0.0f)
{
- /* Basic or no HRTF rendering. Use normal panning to the output. */
- MixGains *gains = voice->Direct.Gains[0];
- ALfloat dir[3] = { 0.0f, 0.0f, -1.0f };
- ALfloat radius = ALSource->Radius;
- ALfloat Target[MAX_OUTPUT_CHANNELS];
+ /* Clamp Y, in case rounding errors caused it to end up outside of
+ * -1...+1.
+ */
+ ev = asinf(clampf(-SourceToListener.v[1], -1.0f, 1.0f));
+ /* Double negation on Z cancels out; negate once for changing source-
+ * to-listener to listener-to-source, and again for right-handed coords
+ * with -Z in front.
+ */
+ az = atan2f(-SourceToListener.v[0], SourceToListener.v[2]*ZScale);
+ }
+ else
+ ev = az = 0.0f;
- /* Get the localized direction, and compute panned gains. */
- if(Distance > FLT_EPSILON)
- {
- dir[0] = -SourceToListener.v[0];
- dir[1] = -SourceToListener.v[1];
- dir[2] = -SourceToListener.v[2] * ZScale;
- }
- if(radius > 0.0f)
- {
- ALfloat dirfact;
- if(radius >= Distance)
- dirfact = Distance / radius * 0.5f;
- else
- dirfact = 1.0f - (asinf(radius / Distance) / F_PI);
- dir[0] *= dirfact;
- dir[1] *= dirfact;
- dir[2] *= dirfact;
- }
- ComputeDirectionalGains(Device, dir, DryGain, Target);
+ if(props->Radius > Distance)
+ spread = F_TAU - Distance/props->Radius*F_PI;
+ else if(Distance > 0.0f)
+ spread = asinf(props->Radius / Distance) * 2.0f;
+ else
+ spread = 0.0f;
+
+ CalcPanningAndFilters(voice, az, ev, Distance, spread, DryGain, DryGainHF, DryGainLF, WetGain,
+ WetGainLF, WetGainHF, SendSlots, ALBuffer, props, Listener, Device);
+}
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- gains[j].Target = Target[j];
- UpdateDryStepping(&voice->Direct, 1, (voice->Direct.Moving ? 64 : 0));
- voice->Direct.Moving = AL_TRUE;
+static void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force)
+{
+ ALbufferlistitem *BufferListItem;
+ struct ALvoiceProps *props;
- voice->IsHrtf = AL_FALSE;
- }
- for(i = 0;i < NumSends;i++)
- {
- voice->Send[i].Gains[0].Target = WetGain[i];
- UpdateWetStepping(&voice->Send[i], 1, (voice->Send[i].Moving ? 64 : 0));
- voice->Send[i].Moving = AL_TRUE;
- }
+ props = ATOMIC_EXCHANGE_PTR(&voice->Update, NULL, almemory_order_acq_rel);
+ if(!props && !force) return;
+ if(props)
{
- ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
- ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
- DryGainHF = maxf(DryGainHF, 0.0001f);
- DryGainLF = maxf(DryGainLF, 0.0001f);
- voice->Direct.Filters[0].ActiveType = AF_None;
- if(DryGainHF != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_LowPass;
- if(DryGainLF != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Direct.Filters[0].LowPass, ALfilterType_HighShelf,
- DryGainHF, hfscale, calc_rcpQ_from_slope(DryGainHF, 0.75f)
- );
- ALfilterState_setParams(
- &voice->Direct.Filters[0].HighPass, ALfilterType_LowShelf,
- DryGainLF, lfscale, calc_rcpQ_from_slope(DryGainLF, 0.75f)
+ memcpy(voice->Props, props,
+ FAM_SIZE(struct ALvoiceProps, Send, context->Device->NumAuxSends)
);
+
+ ATOMIC_REPLACE_HEAD(struct ALvoiceProps*, &context->FreeVoiceProps, props);
}
- for(i = 0;i < NumSends;i++)
+ props = voice->Props;
+
+ BufferListItem = ATOMIC_LOAD(&voice->current_buffer, almemory_order_relaxed);
+ while(BufferListItem != NULL)
{
- ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
- ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
- WetGainHF[i] = maxf(WetGainHF[i], 0.0001f);
- WetGainLF[i] = maxf(WetGainLF[i], 0.0001f);
- voice->Send[i].Filters[0].ActiveType = AF_None;
- if(WetGainHF[i] != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_LowPass;
- if(WetGainLF[i] != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_HighPass;
- ALfilterState_setParams(
- &voice->Send[i].Filters[0].LowPass, ALfilterType_HighShelf,
- WetGainHF[i], hfscale, calc_rcpQ_from_slope(WetGainHF[i], 0.75f)
- );
- ALfilterState_setParams(
- &voice->Send[i].Filters[0].HighPass, ALfilterType_LowShelf,
- WetGainLF[i], lfscale, calc_rcpQ_from_slope(WetGainLF[i], 0.75f)
- );
+ const ALbuffer *buffer = NULL;
+ ALsizei i = 0;
+ while(!buffer && i < BufferListItem->num_buffers)
+ buffer = BufferListItem->buffers[i];
+ if(LIKELY(buffer))
+ {
+ if(props->SpatializeMode == SpatializeOn ||
+ (props->SpatializeMode == SpatializeAuto && buffer->FmtChannels == FmtMono))
+ CalcAttnSourceParams(voice, props, buffer, context);
+ else
+ CalcNonAttnSourceParams(voice, props, buffer, context);
+ break;
+ }
+ BufferListItem = ATOMIC_LOAD(&BufferListItem->next, almemory_order_acquire);
}
}
-void UpdateContextSources(ALCcontext *ctx)
+static void ProcessParamUpdates(ALCcontext *ctx, const struct ALeffectslotArray *slots)
{
- ALvoice *voice, *voice_end;
+ ALvoice **voice, **voice_end;
ALsource *source;
+ ALsizei i;
- if(ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE))
+ IncrementRef(&ctx->UpdateCount);
+ if(!ATOMIC_LOAD(&ctx->HoldUpdates, almemory_order_acquire))
{
- CalcListenerParams(ctx->Listener);
+ bool cforce = CalcContextParams(ctx);
+ bool force = CalcListenerParams(ctx) | cforce;
+ for(i = 0;i < slots->count;i++)
+ force |= CalcEffectSlotParams(slots->slot[i], ctx, cforce);
voice = ctx->Voices;
voice_end = voice + ctx->VoiceCount;
for(;voice != voice_end;++voice)
{
- if(!(source=voice->Source)) continue;
- if(source->state != AL_PLAYING && source->state != AL_PAUSED)
- voice->Source = NULL;
- else
- {
- ATOMIC_STORE(&source->NeedsUpdate, AL_FALSE);
- voice->Update(voice, source, ctx);
- }
+ source = ATOMIC_LOAD(&(*voice)->Source, almemory_order_acquire);
+ if(source) CalcSourceParams(*voice, ctx, force);
}
}
- else
+ IncrementRef(&ctx->UpdateCount);
+}
+
+
+static void ApplyStablizer(FrontStablizer *Stablizer, ALfloat (*restrict Buffer)[BUFFERSIZE],
+ int lidx, int ridx, int cidx, ALsizei SamplesToDo,
+ ALsizei NumChannels)
+{
+ ALfloat (*restrict lsplit)[BUFFERSIZE] = ASSUME_ALIGNED(Stablizer->LSplit, 16);
+ ALfloat (*restrict rsplit)[BUFFERSIZE] = ASSUME_ALIGNED(Stablizer->RSplit, 16);
+ ALsizei i;
+
+ /* Apply an all-pass to all channels, except the front-left and front-
+ * right, so they maintain the same relative phase.
+ */
+ for(i = 0;i < NumChannels;i++)
{
- voice = ctx->Voices;
- voice_end = voice + ctx->VoiceCount;
- for(;voice != voice_end;++voice)
+ if(i == lidx || i == ridx)
+ continue;
+ splitterap_process(&Stablizer->APFilter[i], Buffer[i], SamplesToDo);
+ }
+
+ bandsplit_process(&Stablizer->LFilter, lsplit[1], lsplit[0], Buffer[lidx], SamplesToDo);
+ bandsplit_process(&Stablizer->RFilter, rsplit[1], rsplit[0], Buffer[ridx], SamplesToDo);
+
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ ALfloat lfsum, hfsum;
+ ALfloat m, s, c;
+
+ lfsum = lsplit[0][i] + rsplit[0][i];
+ hfsum = lsplit[1][i] + rsplit[1][i];
+ s = lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i];
+
+ /* This pans the separate low- and high-frequency sums between being on
+ * the center channel and the left/right channels. The low-frequency
+ * sum is 1/3rd toward center (2/3rds on left/right) and the high-
+ * frequency sum is 1/4th toward center (3/4ths on left/right). These
+ * values can be tweaked.
+ */
+ m = lfsum*cosf(1.0f/3.0f * F_PI_2) + hfsum*cosf(1.0f/4.0f * F_PI_2);
+ c = lfsum*sinf(1.0f/3.0f * F_PI_2) + hfsum*sinf(1.0f/4.0f * F_PI_2);
+
+ /* The generated center channel signal adds to the existing signal,
+ * while the modified left and right channels replace.
+ */
+ Buffer[lidx][i] = (m + s) * 0.5f;
+ Buffer[ridx][i] = (m - s) * 0.5f;
+ Buffer[cidx][i] += c * 0.5f;
+ }
+}
+
+static void ApplyDistanceComp(ALfloat (*restrict Samples)[BUFFERSIZE], DistanceComp *distcomp,
+ ALfloat *restrict Values, ALsizei SamplesToDo, ALsizei numchans)
+{
+ ALsizei i, c;
+
+ Values = ASSUME_ALIGNED(Values, 16);
+ for(c = 0;c < numchans;c++)
+ {
+ ALfloat *restrict inout = ASSUME_ALIGNED(Samples[c], 16);
+ const ALfloat gain = distcomp[c].Gain;
+ const ALsizei base = distcomp[c].Length;
+ ALfloat *restrict distbuf = ASSUME_ALIGNED(distcomp[c].Buffer, 16);
+
+ if(base == 0)
{
- if(!(source=voice->Source)) continue;
- if(source->state != AL_PLAYING && source->state != AL_PAUSED)
- voice->Source = NULL;
- else if(ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE))
- voice->Update(voice, source, ctx);
+ if(gain < 1.0f)
+ {
+ for(i = 0;i < SamplesToDo;i++)
+ inout[i] *= gain;
+ }
+ continue;
}
+
+ if(LIKELY(SamplesToDo >= base))
+ {
+ for(i = 0;i < base;i++)
+ Values[i] = distbuf[i];
+ for(;i < SamplesToDo;i++)
+ Values[i] = inout[i-base];
+ memcpy(distbuf, &inout[SamplesToDo-base], base*sizeof(ALfloat));
+ }
+ else
+ {
+ for(i = 0;i < SamplesToDo;i++)
+ Values[i] = distbuf[i];
+ memmove(distbuf, distbuf+SamplesToDo, (base-SamplesToDo)*sizeof(ALfloat));
+ memcpy(distbuf+base-SamplesToDo, inout, SamplesToDo*sizeof(ALfloat));
+ }
+ for(i = 0;i < SamplesToDo;i++)
+ inout[i] = Values[i]*gain;
}
}
-
-/* Specialized function to clamp to [-1, +1] with only one branch. This also
- * converts NaN to 0. */
-static inline ALfloat aluClampf(ALfloat val)
+static void ApplyDither(ALfloat (*restrict Samples)[BUFFERSIZE], ALuint *dither_seed,
+ const ALfloat quant_scale, const ALsizei SamplesToDo,
+ const ALsizei numchans)
{
- if(fabsf(val) <= 1.0f) return val;
- return (ALfloat)((0.0f < val) - (val < 0.0f));
+ const ALfloat invscale = 1.0f / quant_scale;
+ ALuint seed = *dither_seed;
+ ALsizei c, i;
+
+ ASSUME(numchans > 0);
+ ASSUME(SamplesToDo > 0);
+
+ /* Dithering. Step 1, generate whitenoise (uniform distribution of random
+ * values between -1 and +1). Step 2 is to add the noise to the samples,
+ * before rounding and after scaling up to the desired quantization depth.
+ */
+ for(c = 0;c < numchans;c++)
+ {
+ ALfloat *restrict samples = Samples[c];
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ ALfloat val = samples[i] * quant_scale;
+ ALuint rng0 = dither_rng(&seed);
+ ALuint rng1 = dither_rng(&seed);
+ val += (ALfloat)(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
+ samples[i] = fast_roundf(val) * invscale;
+ }
+ }
+ *dither_seed = seed;
}
-static inline ALfloat aluF2F(ALfloat val)
-{ return val; }
-static inline ALint aluF2I(ALfloat val)
+static inline ALfloat Conv_ALfloat(ALfloat val)
+{ return val; }
+static inline ALint Conv_ALint(ALfloat val)
{
- /* Floats only have a 24-bit mantissa, so [-16777215, +16777215] is the max
- * integer range normalized floats can be safely converted to.
+ /* Floats have a 23-bit mantissa. There is an implied 1 bit in the mantissa
+ * along with the sign bit, giving 25 bits total, so [-16777216, +16777216]
+ * is the max value a normalized float can be scaled to before losing
+ * precision.
*/
- return fastf2i(aluClampf(val)*16777215.0f)<<7;
+ return fastf2i(clampf(val*16777216.0f, -16777216.0f, 16777215.0f))<<7;
}
-static inline ALuint aluF2UI(ALfloat val)
-{ return aluF2I(val)+2147483648u; }
-
-static inline ALshort aluF2S(ALfloat val)
-{ return fastf2i(aluClampf(val)*32767.0f); }
-static inline ALushort aluF2US(ALfloat val)
-{ return aluF2S(val)+32768; }
-
-static inline ALbyte aluF2B(ALfloat val)
-{ return fastf2i(aluClampf(val)*127.0f); }
-static inline ALubyte aluF2UB(ALfloat val)
-{ return aluF2B(val)+128; }
-
-#define DECL_TEMPLATE(T, func) \
-static void Write_##T(ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
- ALuint SamplesToDo, ALuint numchans) \
+static inline ALshort Conv_ALshort(ALfloat val)
+{ return fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f)); }
+static inline ALbyte Conv_ALbyte(ALfloat val)
+{ return fastf2i(clampf(val*128.0f, -128.0f, 127.0f)); }
+
+/* Define unsigned output variations. */
+#define DECL_TEMPLATE(T, func, O) \
+static inline T Conv_##T(ALfloat val) { return func(val)+O; }
+
+DECL_TEMPLATE(ALubyte, Conv_ALbyte, 128)
+DECL_TEMPLATE(ALushort, Conv_ALshort, 32768)
+DECL_TEMPLATE(ALuint, Conv_ALint, 2147483648u)
+
+#undef DECL_TEMPLATE
+
+#define DECL_TEMPLATE(T, A) \
+static void Write##A(const ALfloat (*restrict InBuffer)[BUFFERSIZE], \
+ ALvoid *OutBuffer, ALsizei Offset, ALsizei SamplesToDo, \
+ ALsizei numchans) \
{ \
- ALuint i, j; \
+ ALsizei i, j; \
+ \
+ ASSUME(numchans > 0); \
+ ASSUME(SamplesToDo > 0); \
+ \
for(j = 0;j < numchans;j++) \
{ \
- const ALfloat *in = InBuffer[j]; \
- T *restrict out = (T*)OutBuffer + j; \
+ const ALfloat *restrict in = ASSUME_ALIGNED(InBuffer[j], 16); \
+ T *restrict out = (T*)OutBuffer + Offset*numchans + j; \
+ \
for(i = 0;i < SamplesToDo;i++) \
- out[i*numchans] = func(in[i]); \
+ out[i*numchans] = Conv_##T(in[i]); \
} \
}
-DECL_TEMPLATE(ALfloat, aluF2F)
-DECL_TEMPLATE(ALuint, aluF2UI)
-DECL_TEMPLATE(ALint, aluF2I)
-DECL_TEMPLATE(ALushort, aluF2US)
-DECL_TEMPLATE(ALshort, aluF2S)
-DECL_TEMPLATE(ALubyte, aluF2UB)
-DECL_TEMPLATE(ALbyte, aluF2B)
+DECL_TEMPLATE(ALfloat, F32)
+DECL_TEMPLATE(ALuint, UI32)
+DECL_TEMPLATE(ALint, I32)
+DECL_TEMPLATE(ALushort, UI16)
+DECL_TEMPLATE(ALshort, I16)
+DECL_TEMPLATE(ALubyte, UI8)
+DECL_TEMPLATE(ALbyte, I8)
#undef DECL_TEMPLATE
-ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
+void aluMixData(ALCdevice *device, ALvoid *OutBuffer, ALsizei NumSamples)
{
- ALuint SamplesToDo;
- ALvoice *voice, *voice_end;
- ALeffectslot *slot;
- ALsource *source;
+ ALsizei SamplesToDo;
+ ALsizei SamplesDone;
ALCcontext *ctx;
- FPUCtl oldMode;
- ALuint i, c;
+ ALsizei i, c;
- SetMixerFPUMode(&oldMode);
-
- while(size > 0)
+ START_MIXER_MODE();
+ for(SamplesDone = 0;SamplesDone < NumSamples;)
{
- ALfloat (*OutBuffer)[BUFFERSIZE];
- ALuint OutChannels;
+ SamplesToDo = mini(NumSamples-SamplesDone, BUFFERSIZE);
+ for(c = 0;c < device->Dry.NumChannels;c++)
+ memset(device->Dry.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
+ if(device->Dry.Buffer != device->FOAOut.Buffer)
+ for(c = 0;c < device->FOAOut.NumChannels;c++)
+ memset(device->FOAOut.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
+ if(device->Dry.Buffer != device->RealOut.Buffer)
+ for(c = 0;c < device->RealOut.NumChannels;c++)
+ memset(device->RealOut.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
IncrementRef(&device->MixCount);
- OutBuffer = device->DryBuffer;
- OutChannels = device->NumChannels;
-
- SamplesToDo = minu(size, BUFFERSIZE);
- for(c = 0;c < OutChannels;c++)
- memset(OutBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
- if(device->Hrtf)
+ ctx = ATOMIC_LOAD(&device->ContextList, almemory_order_acquire);
+ while(ctx)
{
- /* Set OutBuffer/OutChannels to correspond to the actual output
- * with HRTF. Make sure to clear them too. */
- OutBuffer += OutChannels;
- OutChannels = 2;
- for(c = 0;c < OutChannels;c++)
- memset(OutBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
- }
+ const struct ALeffectslotArray *auxslots;
- V0(device->Backend,lock)();
-
- if((slot=device->DefaultSlot) != NULL)
- {
- if(ATOMIC_EXCHANGE(ALenum, &slot->NeedsUpdate, AL_FALSE))
- V(slot->EffectState,update)(device, slot);
- memset(slot->WetBuffer[0], 0, SamplesToDo*sizeof(ALfloat));
- }
+ auxslots = ATOMIC_LOAD(&ctx->ActiveAuxSlots, almemory_order_acquire);
+ ProcessParamUpdates(ctx, auxslots);
- ctx = ATOMIC_LOAD(&device->ContextList);
- while(ctx)
- {
- if(!ctx->DeferUpdates)
- {
- UpdateContextSources(ctx);
-#define UPDATE_SLOT(iter) do { \
- if(ATOMIC_EXCHANGE(ALenum, &(*iter)->NeedsUpdate, AL_FALSE)) \
- V((*iter)->EffectState,update)(device, *iter); \
- memset((*iter)->WetBuffer[0], 0, SamplesToDo*sizeof(ALfloat)); \
-} while(0)
- VECTOR_FOR_EACH(ALeffectslot*, ctx->ActiveAuxSlots, UPDATE_SLOT);
-#undef UPDATE_SLOT
- }
- else
+ for(i = 0;i < auxslots->count;i++)
{
-#define CLEAR_WET_BUFFER(iter) memset((*iter)->WetBuffer[0], 0, SamplesToDo*sizeof(ALfloat))
- VECTOR_FOR_EACH(ALeffectslot*, ctx->ActiveAuxSlots, CLEAR_WET_BUFFER);
-#undef CLEAR_WET_BUFFER
+ ALeffectslot *slot = auxslots->slot[i];
+ for(c = 0;c < slot->NumChannels;c++)
+ memset(slot->WetBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
}
/* source processing */
- voice = ctx->Voices;
- voice_end = voice + ctx->VoiceCount;
- for(;voice != voice_end;++voice)
+ for(i = 0;i < ctx->VoiceCount;i++)
{
- source = voice->Source;
- if(source && source->state == AL_PLAYING)
- MixSource(voice, source, device, SamplesToDo);
+ ALvoice *voice = ctx->Voices[i];
+ ALsource *source = ATOMIC_LOAD(&voice->Source, almemory_order_acquire);
+ if(source && ATOMIC_LOAD(&voice->Playing, almemory_order_relaxed) &&
+ voice->Step > 0)
+ {
+ if(!MixSource(voice, source->id, ctx, SamplesToDo))
+ {
+ ATOMIC_STORE(&voice->Source, NULL, almemory_order_relaxed);
+ ATOMIC_STORE(&voice->Playing, false, almemory_order_release);
+ SendSourceStoppedEvent(ctx, source->id);
+ }
+ }
}
/* effect slot processing */
-#define PROCESS_SLOT(iter) V((*iter)->EffectState,process)( \
- SamplesToDo, (*iter)->WetBuffer[0], device->DryBuffer, device->NumChannels \
-);
- VECTOR_FOR_EACH(ALeffectslot*, ctx->ActiveAuxSlots, PROCESS_SLOT);
-#undef PROCESS_SLOT
+ for(i = 0;i < auxslots->count;i++)
+ {
+ const ALeffectslot *slot = auxslots->slot[i];
+ ALeffectState *state = slot->Params.EffectState;
+ V(state,process)(SamplesToDo, slot->WetBuffer, state->OutBuffer,
+ state->OutChannels);
+ }
- ctx = ctx->next;
+ ctx = ATOMIC_LOAD(&ctx->next, almemory_order_relaxed);
}
- if((slot=device->DefaultSlot) != NULL)
- V(slot->EffectState,process)(
- SamplesToDo, slot->WetBuffer[0], device->DryBuffer, device->NumChannels
- );
-
/* Increment the clock time. Every second's worth of samples is
* converted and added to clock base so that large sample counts don't
* overflow during conversion. This also guarantees an exact, stable
@@ -1488,104 +1815,109 @@ ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
device->SamplesDone += SamplesToDo;
device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
device->SamplesDone %= device->Frequency;
- V0(device->Backend,unlock)();
+ IncrementRef(&device->MixCount);
- if(device->Hrtf)
- {
- HrtfMixerFunc HrtfMix = SelectHrtfMixer();
- ALuint irsize = GetHrtfIrSize(device->Hrtf);
- for(c = 0;c < device->NumChannels;c++)
- HrtfMix(OutBuffer, device->DryBuffer[c], 0, device->Hrtf_Offset,
- 0, irsize, &device->Hrtf_Params[c], &device->Hrtf_State[c],
- SamplesToDo
- );
- device->Hrtf_Offset += SamplesToDo;
- }
- else if(device->Bs2b)
+ /* Apply post-process for finalizing the Dry mix to the RealOut
+ * (Ambisonic decode, UHJ encode, etc).
+ */
+ if(LIKELY(device->PostProcess))
+ device->PostProcess(device, SamplesToDo);
+
+ if(device->Stablizer)
{
- /* Apply binaural/crossfeed filter */
- for(i = 0;i < SamplesToDo;i++)
- {
- float samples[2];
- samples[0] = device->DryBuffer[0][i];
- samples[1] = device->DryBuffer[1][i];
- bs2b_cross_feed(device->Bs2b, samples);
- device->DryBuffer[0][i] = samples[0];
- device->DryBuffer[1][i] = samples[1];
- }
+ int lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ int ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ int cidx = GetChannelIdxByName(&device->RealOut, FrontCenter);
+ assert(lidx >= 0 && ridx >= 0 && cidx >= 0);
+
+ ApplyStablizer(device->Stablizer, device->RealOut.Buffer, lidx, ridx, cidx,
+ SamplesToDo, device->RealOut.NumChannels);
}
- if(buffer)
+ ApplyDistanceComp(device->RealOut.Buffer, device->ChannelDelay, device->TempBuffer[0],
+ SamplesToDo, device->RealOut.NumChannels);
+
+ if(device->Limiter)
+ ApplyCompression(device->Limiter, SamplesToDo, device->RealOut.Buffer);
+
+ if(device->DitherDepth > 0.0f)
+ ApplyDither(device->RealOut.Buffer, &device->DitherSeed, device->DitherDepth,
+ SamplesToDo, device->RealOut.NumChannels);
+
+ if(LIKELY(OutBuffer))
{
-#define WRITE(T, a, b, c, d) do { \
- Write_##T((a), (b), (c), (d)); \
- buffer = (T*)buffer + (c)*(d); \
-} while(0)
+ ALfloat (*Buffer)[BUFFERSIZE] = device->RealOut.Buffer;
+ ALsizei Channels = device->RealOut.NumChannels;
+
switch(device->FmtType)
{
- case DevFmtByte:
- WRITE(ALbyte, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtUByte:
- WRITE(ALubyte, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtShort:
- WRITE(ALshort, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtUShort:
- WRITE(ALushort, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtInt:
- WRITE(ALint, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtUInt:
- WRITE(ALuint, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
- case DevFmtFloat:
- WRITE(ALfloat, OutBuffer, buffer, SamplesToDo, OutChannels);
- break;
+#define HANDLE_WRITE(T, S) case T: \
+ Write##S(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels); break;
+ HANDLE_WRITE(DevFmtByte, I8)
+ HANDLE_WRITE(DevFmtUByte, UI8)
+ HANDLE_WRITE(DevFmtShort, I16)
+ HANDLE_WRITE(DevFmtUShort, UI16)
+ HANDLE_WRITE(DevFmtInt, I32)
+ HANDLE_WRITE(DevFmtUInt, UI32)
+ HANDLE_WRITE(DevFmtFloat, F32)
+#undef HANDLE_WRITE
}
-#undef WRITE
}
- size -= SamplesToDo;
- IncrementRef(&device->MixCount);
+ SamplesDone += SamplesToDo;
}
-
- RestoreFPUMode(&oldMode);
+ END_MIXER_MODE();
}
-ALvoid aluHandleDisconnect(ALCdevice *device)
+void aluHandleDisconnect(ALCdevice *device, const char *msg, ...)
{
- ALCcontext *Context;
+ AsyncEvent evt = ASYNC_EVENT(EventType_Disconnected);
+ ALCcontext *ctx;
+ va_list args;
+ int msglen;
+
+ if(!ATOMIC_EXCHANGE(&device->Connected, AL_FALSE, almemory_order_acq_rel))
+ return;
+
+ evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT;
+ evt.u.user.id = 0;
+ evt.u.user.param = 0;
- device->Connected = ALC_FALSE;
+ va_start(args, msg);
+ msglen = vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args);
+ va_end(args);
- Context = ATOMIC_LOAD(&device->ContextList);
- while(Context)
+ if(msglen < 0 || (size_t)msglen >= sizeof(evt.u.user.msg))
+ evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0;
+
+ ctx = ATOMIC_LOAD_SEQ(&device->ContextList);
+ while(ctx)
{
- ALvoice *voice, *voice_end;
+ ALbitfieldSOFT enabledevt = ATOMIC_LOAD(&ctx->EnabledEvts, almemory_order_acquire);
+ ALsizei i;
+
+ if((enabledevt&EventType_Disconnected) &&
+ ll_ringbuffer_write(ctx->AsyncEvents, (const char*)&evt, 1) == 1)
+ alsem_post(&ctx->EventSem);
- voice = Context->Voices;
- voice_end = voice + Context->VoiceCount;
- while(voice != voice_end)
+ for(i = 0;i < ctx->VoiceCount;i++)
{
- ALsource *source = voice->Source;
- voice->Source = NULL;
+ ALvoice *voice = ctx->Voices[i];
+ ALsource *source;
- if(source && source->state == AL_PLAYING)
+ source = ATOMIC_EXCHANGE_PTR(&voice->Source, NULL, almemory_order_relaxed);
+ if(source && ATOMIC_LOAD(&voice->Playing, almemory_order_relaxed))
{
- source->state = AL_STOPPED;
- ATOMIC_STORE(&source->current_buffer, NULL);
- source->position = 0;
- source->position_fraction = 0;
+ /* If the source's voice was playing, it's now effectively
+ * stopped (the source state will be updated the next time it's
+ * checked).
+ */
+ SendSourceStoppedEvent(ctx, source->id);
}
-
- voice++;
+ ATOMIC_STORE(&voice->Playing, false, almemory_order_release);
}
- Context->VoiceCount = 0;
- Context = Context->next;
+ ctx = ATOMIC_LOAD(&ctx->next, almemory_order_relaxed);
}
}