aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/mixer/mixer_neon.c
diff options
context:
space:
mode:
authorSven Gothel <[email protected]>2019-04-07 23:39:04 +0200
committerSven Gothel <[email protected]>2019-04-07 23:39:04 +0200
commit73233ce69919fc19c53ce8663c5b8cc05227f07e (patch)
treef2b6ccc1a14d7c387f33398a44ea4511d7ecb212 /Alc/mixer/mixer_neon.c
parent8efa4c7ba5ee8eb399d31a9884e45f743d4625ad (diff)
parent99a55c445211fea77af6ab61cbc6a6ec4fbdc9b9 (diff)
Merge branch 'v1.19' of git://repo.or.cz/openal-soft into v1.19v1.19
Diffstat (limited to 'Alc/mixer/mixer_neon.c')
-rw-r--r--Alc/mixer/mixer_neon.c283
1 files changed, 283 insertions, 0 deletions
diff --git a/Alc/mixer/mixer_neon.c b/Alc/mixer/mixer_neon.c
new file mode 100644
index 00000000..9bf5521a
--- /dev/null
+++ b/Alc/mixer/mixer_neon.c
@@ -0,0 +1,283 @@
+#include "config.h"
+
+#include <arm_neon.h>
+
+#include "AL/al.h"
+#include "AL/alc.h"
+#include "alMain.h"
+#include "alu.h"
+#include "hrtf.h"
+#include "defs.h"
+
+
+const ALfloat *Resample_lerp_Neon(const InterpState* UNUSED(state),
+ const ALfloat *restrict src, ALsizei frac, ALint increment,
+ ALfloat *restrict dst, ALsizei numsamples)
+{
+ const int32x4_t increment4 = vdupq_n_s32(increment*4);
+ const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
+ const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
+ alignas(16) ALsizei pos_[4], frac_[4];
+ int32x4_t pos4, frac4;
+ ALsizei todo, pos, i;
+
+ ASSUME(numsamples > 0);
+
+ InitiatePositionArrays(frac, increment, frac_, pos_, 4);
+ frac4 = vld1q_s32(frac_);
+ pos4 = vld1q_s32(pos_);
+
+ todo = numsamples & ~3;
+ for(i = 0;i < todo;i += 4)
+ {
+ const int pos0 = vgetq_lane_s32(pos4, 0);
+ const int pos1 = vgetq_lane_s32(pos4, 1);
+ const int pos2 = vgetq_lane_s32(pos4, 2);
+ const int pos3 = vgetq_lane_s32(pos4, 3);
+ const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]};
+ const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]};
+
+ /* val1 + (val2-val1)*mu */
+ const float32x4_t r0 = vsubq_f32(val2, val1);
+ const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4);
+ const float32x4_t out = vmlaq_f32(val1, mu, r0);
+
+ vst1q_f32(&dst[i], out);
+
+ frac4 = vaddq_s32(frac4, increment4);
+ pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
+ frac4 = vandq_s32(frac4, fracMask4);
+ }
+
+ /* NOTE: These four elements represent the position *after* the last four
+ * samples, so the lowest element is the next position to resample.
+ */
+ pos = vgetq_lane_s32(pos4, 0);
+ frac = vgetq_lane_s32(frac4, 0);
+
+ for(;i < numsamples;++i)
+ {
+ dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
+
+ frac += increment;
+ pos += frac>>FRACTIONBITS;
+ frac &= FRACTIONMASK;
+ }
+ return dst;
+}
+
+const ALfloat *Resample_bsinc_Neon(const InterpState *state,
+ const ALfloat *restrict src, ALsizei frac, ALint increment,
+ ALfloat *restrict dst, ALsizei dstlen)
+{
+ const ALfloat *const filter = state->bsinc.filter;
+ const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf);
+ const ALsizei m = state->bsinc.m;
+ const float32x4_t *fil, *scd, *phd, *spd;
+ ALsizei pi, i, j, offset;
+ float32x4_t r4;
+ ALfloat pf;
+
+ ASSUME(m > 0);
+ ASSUME(dstlen > 0);
+
+ src -= state->bsinc.l;
+ for(i = 0;i < dstlen;i++)
+ {
+ // Calculate the phase index and factor.
+#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
+ pi = frac >> FRAC_PHASE_BITDIFF;
+ pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
+#undef FRAC_PHASE_BITDIFF
+
+ offset = m*pi*4;
+ fil = ASSUME_ALIGNED(filter + offset, 16); offset += m;
+ scd = ASSUME_ALIGNED(filter + offset, 16); offset += m;
+ phd = ASSUME_ALIGNED(filter + offset, 16); offset += m;
+ spd = ASSUME_ALIGNED(filter + offset, 16);
+
+ // Apply the scale and phase interpolated filter.
+ r4 = vdupq_n_f32(0.0f);
+ {
+ const ALsizei count = m >> 2;
+ const float32x4_t pf4 = vdupq_n_f32(pf);
+
+ ASSUME(count > 0);
+
+ for(j = 0;j < count;j++)
+ {
+ /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
+ const float32x4_t f4 = vmlaq_f32(
+ vmlaq_f32(fil[j], sf4, scd[j]),
+ pf4, vmlaq_f32(phd[j], sf4, spd[j])
+ );
+ /* r += f*src */
+ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4]));
+ }
+ }
+ r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
+ vrev64_f32(vget_low_f32(r4))));
+ dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ frac += increment;
+ src += frac>>FRACTIONBITS;
+ frac &= FRACTIONMASK;
+ }
+ return dst;
+}
+
+
+static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
+ const ALsizei IrSize,
+ const ALfloat (*restrict Coeffs)[2],
+ ALfloat left, ALfloat right)
+{
+ ALsizei c;
+ float32x4_t leftright4;
+ {
+ float32x2_t leftright2 = vdup_n_f32(0.0);
+ leftright2 = vset_lane_f32(left, leftright2, 0);
+ leftright2 = vset_lane_f32(right, leftright2, 1);
+ leftright4 = vcombine_f32(leftright2, leftright2);
+ }
+ Values = ASSUME_ALIGNED(Values, 16);
+ Coeffs = ASSUME_ALIGNED(Coeffs, 16);
+ for(c = 0;c < IrSize;c += 2)
+ {
+ const ALsizei o0 = (Offset+c)&HRIR_MASK;
+ const ALsizei o1 = (o0+1)&HRIR_MASK;
+ float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
+ vld1_f32((float32_t*)&Values[o1][0]));
+ float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
+
+ vals = vmlaq_f32(vals, coefs, leftright4);
+
+ vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
+ vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
+ }
+}
+
+#define MixHrtf MixHrtf_Neon
+#define MixHrtfBlend MixHrtfBlend_Neon
+#define MixDirectHrtf MixDirectHrtf_Neon
+#include "hrtf_inc.c"
+
+
+void Mix_Neon(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
+ ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
+ ALsizei BufferSize)
+{
+ const ALfloat delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
+ ALsizei c;
+
+ ASSUME(OutChans > 0);
+ ASSUME(BufferSize > 0);
+ data = ASSUME_ALIGNED(data, 16);
+ OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);
+
+ for(c = 0;c < OutChans;c++)
+ {
+ ALsizei pos = 0;
+ ALfloat gain = CurrentGains[c];
+ const ALfloat diff = TargetGains[c] - gain;
+
+ if(fabsf(diff) > FLT_EPSILON)
+ {
+ ALsizei minsize = mini(BufferSize, Counter);
+ const ALfloat step = diff * delta;
+ ALfloat step_count = 0.0f;
+ /* Mix with applying gain steps in aligned multiples of 4. */
+ if(LIKELY(minsize > 3))
+ {
+ const float32x4_t four4 = vdupq_n_f32(4.0f);
+ const float32x4_t step4 = vdupq_n_f32(step);
+ const float32x4_t gain4 = vdupq_n_f32(gain);
+ float32x4_t step_count4 = vsetq_lane_f32(0.0f,
+ vsetq_lane_f32(1.0f,
+ vsetq_lane_f32(2.0f,
+ vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3),
+ 2), 1), 0
+ );
+ ALsizei todo = minsize >> 2;
+
+ do {
+ const float32x4_t val4 = vld1q_f32(&data[pos]);
+ float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
+ dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
+ step_count4 = vaddq_f32(step_count4, four4);
+ vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
+ pos += 4;
+ } while(--todo);
+ /* NOTE: step_count4 now represents the next four counts after
+ * the last four mixed samples, so the lowest element
+ * represents the next step count to apply.
+ */
+ step_count = vgetq_lane_f32(step_count4, 0);
+ }
+ /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
+ for(;pos < minsize;pos++)
+ {
+ OutBuffer[c][OutPos+pos] += data[pos]*(gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = TargetGains[c];
+ else
+ gain += step*step_count;
+ CurrentGains[c] = gain;
+
+ /* Mix until pos is aligned with 4 or the mix is done. */
+ minsize = mini(BufferSize, (pos+3)&~3);
+ for(;pos < minsize;pos++)
+ OutBuffer[c][OutPos+pos] += data[pos]*gain;
+ }
+
+ if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
+ continue;
+ if(LIKELY(BufferSize-pos > 3))
+ {
+ ALsizei todo = (BufferSize-pos) >> 2;
+ const float32x4_t gain4 = vdupq_n_f32(gain);
+ do {
+ const float32x4_t val4 = vld1q_f32(&data[pos]);
+ float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
+ dry4 = vmlaq_f32(dry4, val4, gain4);
+ vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(;pos < BufferSize;pos++)
+ OutBuffer[c][OutPos+pos] += data[pos]*gain;
+ }
+}
+
+void MixRow_Neon(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
+{
+ ALsizei c;
+
+ ASSUME(InChans > 0);
+ ASSUME(BufferSize > 0);
+
+ for(c = 0;c < InChans;c++)
+ {
+ ALsizei pos = 0;
+ const ALfloat gain = Gains[c];
+ if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
+ continue;
+
+ if(LIKELY(BufferSize > 3))
+ {
+ ALsizei todo = BufferSize >> 2;
+ float32x4_t gain4 = vdupq_n_f32(gain);
+ do {
+ const float32x4_t val4 = vld1q_f32(&data[c][InPos+pos]);
+ float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]);
+ dry4 = vmlaq_f32(dry4, val4, gain4);
+ vst1q_f32(&OutBuffer[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(;pos < BufferSize;pos++)
+ OutBuffer[pos] += data[c][InPos+pos]*gain;
+ }
+}