aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/convolution.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2023-10-15 12:18:06 -0700
committerChris Robinson <[email protected]>2023-10-15 12:18:06 -0700
commitaf4f92c3a235c6f99ee9a46399dee976e70e9d4f (patch)
treec23564fa447074389949822a9b644bae06192f5a /alc/effects/convolution.cpp
parent4c356cb2b10f5fb05e1917ef4c5cba756c6c35c9 (diff)
Avoid some unique and wrapper types
Diffstat (limited to 'alc/effects/convolution.cpp')
-rw-r--r--alc/effects/convolution.cpp91
1 files changed, 33 insertions, 58 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp
index ca5337b4..5c0b2677 100644
--- a/alc/effects/convolution.cpp
+++ b/alc/effects/convolution.cpp
@@ -189,28 +189,6 @@ void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *REST
}
-template<typename T>
-struct AlignedDeleter { };
-
-template<typename T>
-struct AlignedDeleter<T[]> {
- static_assert(std::is_trivially_destructible_v<T>);
- using type = T;
-
- void operator()(T *ptr) { al_free(ptr); }
-};
-template<typename T>
-using AlignedUPtr = std::unique_ptr<T,AlignedDeleter<T>>;
-
-template<typename T, size_t A>
-auto MakeAlignedPtr(size_t count) -> AlignedUPtr<T>
-{
- using Type = typename AlignedDeleter<T>::type;
- void *ptr{al_calloc(A, sizeof(Type)*count)};
- return AlignedUPtr<T>{::new(ptr) Type[count]};
-}
-
-
struct PFFFTSetupDeleter {
void operator()(PFFFT_Setup *ptr) { pffft_destroy_setup(ptr); }
};
@@ -242,9 +220,8 @@ struct ConvolutionState final : public EffectState {
float Current[MAX_OUTPUT_CHANNELS]{};
float Target[MAX_OUTPUT_CHANNELS]{};
};
- using ChannelDataArray = al::FlexArray<ChannelData>;
- std::unique_ptr<ChannelDataArray> mChans;
- AlignedUPtr<float[]> mComplexData;
+ std::vector<ChannelData> mChans;
+ al::vector<float,16> mComplexData;
ConvolutionState() = default;
@@ -267,7 +244,7 @@ struct ConvolutionState final : public EffectState {
void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
samplesToDo, 0);
}
@@ -275,7 +252,7 @@ void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
{
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale);
@@ -304,8 +281,8 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
mCurrentSegment = 0;
mNumConvolveSegs = 0;
- mChans = nullptr;
- mComplexData = nullptr;
+ decltype(mChans){}.swap(mChans);
+ decltype(mComplexData){}.swap(mComplexData);
/* An empty buffer doesn't need a convolution filter. */
if(!buffer || buffer->mSampleLen < 1) return;
@@ -319,7 +296,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
const auto realChannels = buffer->channelsFromFmt();
const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder);
- mChans = ChannelDataArray::Create(numChannels);
+ mChans.resize(numChannels);
/* The impulse response needs to have the same sample rate as the input and
* output. The bsinc24 resampler is decent, but there is high-frequency
@@ -334,7 +311,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
buffer->mSampleRate);
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
- for(auto &e : *mChans)
+ for(auto &e : mChans)
e.mFilter = splitter;
mFilter.resize(numChannels, {});
@@ -349,8 +326,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
const size_t complex_length{mNumConvolveSegs * ConvolveUpdateSize * (numChannels+1)};
- mComplexData = MakeAlignedPtr<float[],16>(complex_length);
- std::fill_n(mComplexData.get(), complex_length, 0.0f);
+ mComplexData.resize(complex_length, 0.0f);
/* Load the samples from the buffer. */
const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)};
@@ -374,7 +350,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
auto ffttmp = al::vector<float,16>(ConvolveUpdateSize);
auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
- float *filteriter = mComplexData.get() + mNumConvolveSegs*ConvolveUpdateSize;
+ float *filteriter = mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize;
for(size_t c{0};c < numChannels;++c)
{
/* Resample to match the device. */
@@ -481,7 +457,7 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
mMix = &ConvolutionState::NormalMix;
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f);
const float gain{slot->Gain};
if(IsAmbisonic(mChannels))
@@ -490,24 +466,24 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
if(mChannels == FmtUHJ2 && !device->mUhjEncoder)
{
mMix = &ConvolutionState::UpsampleMix;
- (*mChans)[0].mHfScale = 1.0f;
- (*mChans)[0].mLfScale = DecoderBase::sWLFScale;
- (*mChans)[1].mHfScale = 1.0f;
- (*mChans)[1].mLfScale = DecoderBase::sXYLFScale;
- (*mChans)[2].mHfScale = 1.0f;
- (*mChans)[2].mLfScale = DecoderBase::sXYLFScale;
+ mChans[0].mHfScale = 1.0f;
+ mChans[0].mLfScale = DecoderBase::sWLFScale;
+ mChans[1].mHfScale = 1.0f;
+ mChans[1].mLfScale = DecoderBase::sXYLFScale;
+ mChans[2].mHfScale = 1.0f;
+ mChans[2].mLfScale = DecoderBase::sXYLFScale;
}
else if(device->mAmbiOrder > mAmbiOrder)
{
mMix = &ConvolutionState::UpsampleMix;
const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
device->m2DMixing);
- (*mChans)[0].mHfScale = scales[0];
- (*mChans)[0].mLfScale = 1.0f;
- for(size_t i{1};i < mChans->size();++i)
+ mChans[0].mHfScale = scales[0];
+ mChans[0].mLfScale = 1.0f;
+ for(size_t i{1};i < mChans.size();++i)
{
- (*mChans)[i].mHfScale = scales[1];
- (*mChans)[i].mLfScale = 1.0f;
+ mChans[i].mHfScale = scales[1];
+ mChans[i].mLfScale = 1.0f;
}
}
mOutTarget = target.Main->Buffer;
@@ -535,7 +511,7 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
GetAmbiLayout(mAmbiLayout).data()};
std::array<float,MaxAmbiChannels> coeffs{};
- for(size_t c{0u};c < mChans->size();++c)
+ for(size_t c{0u};c < mChans.size();++c)
{
const size_t acn{index_map[c]};
const float scale{scales[acn]};
@@ -543,7 +519,7 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
for(size_t x{0};x < 4;++x)
coeffs[x] = mixmatrix[acn][x] * scale;
- ComputePanGains(target.Main, coeffs, gain, (*mChans)[c].Target);
+ ComputePanGains(target.Main, coeffs, gain, mChans[c].Target);
}
}
else
@@ -612,14 +588,14 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
{
if(chanmap[i].channel == LFE) continue;
const auto coeffs = CalcDirectionCoeffs(ScaleAzimuthFront(chanmap[i].pos), 0.0f);
- ComputePanGains(target.Main, coeffs, gain, (*mChans)[i].Target);
+ ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
else for(size_t i{0};i < chanmap.size();++i)
{
if(chanmap[i].channel == LFE) continue;
const auto coeffs = CalcDirectionCoeffs(chanmap[i].pos, 0.0f);
- ComputePanGains(target.Main, coeffs, gain, (*mChans)[i].Target);
+ ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
}
@@ -631,7 +607,6 @@ void ConvolutionState::process(const size_t samplesToDo,
return;
size_t curseg{mCurrentSegment};
- auto &chans = *mChans;
for(size_t base{0u};base < samplesToDo;)
{
@@ -643,9 +618,9 @@ void ConvolutionState::process(const size_t samplesToDo,
/* Apply the FIR for the newly retrieved input samples, and combine it
* with the inverse FFT'd output samples.
*/
- for(size_t c{0};c < chans.size();++c)
+ for(size_t c{0};c < mChans.size();++c)
{
- auto buf_iter = chans[c].mBuffer.begin() + base;
+ auto buf_iter = mChans[c].mBuffer.begin() + base;
apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data());
auto fifo_iter = mOutput[c].begin() + mFifoPos;
@@ -666,24 +641,24 @@ void ConvolutionState::process(const size_t samplesToDo,
/* Calculate the frequency-domain response and add the relevant
* frequency bins to the FFT history.
*/
- pffft_transform(mFft.get(), mInput.data(), mComplexData.get() + curseg*ConvolveUpdateSize,
+ pffft_transform(mFft.get(), mInput.data(), mComplexData.data() + curseg*ConvolveUpdateSize,
mFftWorkBuffer.data(), PFFFT_FORWARD);
- const float *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*ConvolveUpdateSize};
- for(size_t c{0};c < chans.size();++c)
+ const float *filter{mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize};
+ for(size_t c{0};c < mChans.size();++c)
{
/* Convolve each input segment with its IR filter counterpart
* (aligned in time).
*/
mFftBuffer.fill(0.0f);
- const float *RESTRICT input{&mComplexData[curseg*ConvolveUpdateSize]};
+ const float *input{&mComplexData[curseg*ConvolveUpdateSize]};
for(size_t s{curseg};s < mNumConvolveSegs;++s)
{
pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data());
input += ConvolveUpdateSize;
filter += ConvolveUpdateSize;
}
- input = mComplexData.get();
+ input = mComplexData.data();
for(size_t s{0};s < curseg;++s)
{
pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data());