aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Alc/effects/fshifter.cpp2
-rw-r--r--Alc/effects/pshifter.cpp4
-rw-r--r--common/alcomplex.cpp58
-rw-r--r--common/alcomplex.h18
4 files changed, 41 insertions, 41 deletions
diff --git a/Alc/effects/fshifter.cpp b/Alc/effects/fshifter.cpp
index 496a767d..0bbcc859 100644
--- a/Alc/effects/fshifter.cpp
+++ b/Alc/effects/fshifter.cpp
@@ -171,7 +171,7 @@ void FshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RE
}
/* Processing signal by Discrete Hilbert Transform (analytical signal). */
- complex_hilbert(mAnalytic, HIL_SIZE);
+ complex_hilbert(mAnalytic);
/* Windowing and add to output accumulator */
for(k = 0;k < HIL_SIZE;k++)
diff --git a/Alc/effects/pshifter.cpp b/Alc/effects/pshifter.cpp
index f1865830..619bde34 100644
--- a/Alc/effects/pshifter.cpp
+++ b/Alc/effects/pshifter.cpp
@@ -230,7 +230,7 @@ void PshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RE
/* ANALYSIS */
/* Apply FFT to FFTbuffer data */
- complex_fft(mFFTbuffer, STFT_SIZE, -1.0);
+ complex_fft(mFFTbuffer, -1.0);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
@@ -302,7 +302,7 @@ void PshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RE
mFFTbuffer[k] = complex_d{};
/* Apply iFFT to buffer data */
- complex_fft(mFFTbuffer, STFT_SIZE, 1.0);
+ complex_fft(mFFTbuffer, 1.0);
/* Windowing and add to output */
for(ALsizei k{0};k < STFT_SIZE;k++)
diff --git a/common/alcomplex.cpp b/common/alcomplex.cpp
index ace1b43f..9074cf5f 100644
--- a/common/alcomplex.cpp
+++ b/common/alcomplex.cpp
@@ -4,6 +4,7 @@
#include "alcomplex.h"
#include <cmath>
+#include <algorithm>
namespace {
@@ -11,13 +12,14 @@ constexpr double Pi{3.141592653589793238462643383279502884};
} // namespace
-void complex_fft(std::complex<double> *FFTBuffer, int FFTSize, double Sign)
+void complex_fft(const al::span<std::complex<double>> buffer, const double sign)
{
+ const size_t fftsize{buffer.size()};
/* Bit-reversal permutation applied to a sequence of FFTSize items */
- for(int i{1};i < FFTSize-1;i++)
+ for(size_t i{1u};i < fftsize-1;i++)
{
- int j{0};
- for(int mask{1};mask < FFTSize;mask <<= 1)
+ size_t j{0u};
+ for(size_t mask{1u};mask < fftsize;mask <<= 1)
{
if((i&mask) != 0)
j++;
@@ -26,25 +28,25 @@ void complex_fft(std::complex<double> *FFTBuffer, int FFTSize, double Sign)
j >>= 1;
if(i < j)
- std::swap(FFTBuffer[i], FFTBuffer[j]);
+ std::swap(buffer[i], buffer[j]);
}
/* Iterative form of Danielson–Lanczos lemma */
- int step{2};
- for(int i{1};i < FFTSize;i<<=1, step<<=1)
+ size_t step{2u};
+ for(size_t i{1u};i < fftsize;i<<=1, step<<=1)
{
- int step2{step >> 1};
+ const size_t step2{step >> 1};
double arg{Pi / step2};
- std::complex<double> w{std::cos(arg), std::sin(arg)*Sign};
+ std::complex<double> w{std::cos(arg), std::sin(arg)*sign};
std::complex<double> u{1.0, 0.0};
- for(int j{0};j < step2;j++)
+ for(size_t j{0};j < step2;j++)
{
- for(int k{j};k < FFTSize;k+=step)
+ for(size_t k{j};k < fftsize;k+=step)
{
- std::complex<double> temp{FFTBuffer[k+step2] * u};
- FFTBuffer[k+step2] = FFTBuffer[k] - temp;
- FFTBuffer[k] += temp;
+ std::complex<double> temp{buffer[k+step2] * u};
+ buffer[k+step2] = buffer[k] - temp;
+ buffer[k] += temp;
}
u *= w;
@@ -52,25 +54,23 @@ void complex_fft(std::complex<double> *FFTBuffer, int FFTSize, double Sign)
}
}
-void complex_hilbert(std::complex<double> *Buffer, int size)
+void complex_hilbert(const al::span<std::complex<double>> buffer)
{
- const double inverse_size = 1.0/static_cast<double>(size);
+ std::for_each(buffer.begin(), buffer.end(), [](std::complex<double> &c) { c.imag(0.0); });
- for(int i{0};i < size;i++)
- Buffer[i].imag(0.0);
+ complex_fft(buffer, 1.0);
- complex_fft(Buffer, size, 1.0);
+ const double inverse_size = 1.0/static_cast<double>(buffer.size());
+ auto bufiter = buffer.begin();
+ const auto halfiter = bufiter + (buffer.size()>>1);
- int todo{size>>1};
- int i{0};
+ *bufiter *= inverse_size; ++bufiter;
+ bufiter = std::transform(bufiter, halfiter, bufiter,
+ [inverse_size](const std::complex<double> &c) -> std::complex<double>
+ { return c * (2.0*inverse_size); });
+ *bufiter *= inverse_size; ++bufiter;
- Buffer[i++] *= inverse_size;
- while(i < todo)
- Buffer[i++] *= 2.0*inverse_size;
- Buffer[i++] *= inverse_size;
+ std::fill(bufiter, buffer.end(), std::complex<double>{});
- for(;i < size;i++)
- Buffer[i] = std::complex<double>{};
-
- complex_fft(Buffer, size, -1.0);
+ complex_fft(buffer, -1.0);
}
diff --git a/common/alcomplex.h b/common/alcomplex.h
index 554886c4..f224cce2 100644
--- a/common/alcomplex.h
+++ b/common/alcomplex.h
@@ -3,22 +3,22 @@
#include <complex>
+#include "alspan.h"
+
/**
* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is
- * FFT and 1 is iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the
- * Discrete Fourier Transform (DFT) of the time domain data stored in
- * FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of complex numbers, FFTSize
- * MUST BE power of two.
+ * FFT and 1 is iFFT (inverse). Fills the buffer with the Discrete Fourier
+ * Transform (DFT) of the time domain data stored in the buffer. The buffer is
+ * an array of complex numbers, and MUST BE power of two.
*/
-void complex_fft(std::complex<double> *FFTBuffer, int FFTSize, double Sign);
+void complex_fft(const al::span<std::complex<double>> buffer, const double sign);
/**
* Calculate the complex helical sequence (discrete-time analytical signal) of
* the given input using the discrete Hilbert transform (In-place algorithm).
- * Fills Buffer[0...size-1] with the discrete-time analytical signal stored in
- * Buffer[0...size-1]. Buffer is an array of complex numbers, size MUST BE
- * power of two.
+ * Fills the buffer with the discrete-time analytical signal stored in the
+ * buffer. The buffer is an array of complex numbers and MUST BE power of two.
*/
-void complex_hilbert(std::complex<double> *Buffer, int size);
+void complex_hilbert(const al::span<std::complex<double>> buffer);
#endif /* ALCOMPLEX_H */