diff options
Diffstat (limited to 'Alc/hrtf.c')
-rw-r--r-- | Alc/hrtf.c | 1551 |
1 files changed, 1058 insertions, 493 deletions
@@ -29,423 +29,460 @@ #include "alSource.h" #include "alu.h" #include "hrtf.h" +#include "alconfig.h" +#include "filters/splitter.h" #include "compat.h" +#include "almalloc.h" /* Current data set limits defined by the makehrtf utility. */ #define MIN_IR_SIZE (8) -#define MAX_IR_SIZE (128) +#define MAX_IR_SIZE (512) #define MOD_IR_SIZE (8) +#define MIN_FD_COUNT (1) +#define MAX_FD_COUNT (16) + +#define MIN_FD_DISTANCE (50) +#define MAX_FD_DISTANCE (2500) + #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) -struct Hrtf { - ALuint sampleRate; - ALuint irSize; - ALubyte evCount; +#define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1) - const ALubyte *azCount; - const ALushort *evOffset; - const ALshort *coeffs; - const ALubyte *delays; - - al_string filename; - struct Hrtf *next; +struct HrtfEntry { + struct HrtfEntry *next; + struct Hrtf *handle; + char filename[]; }; static const ALchar magicMarker00[8] = "MinPHR00"; static const ALchar magicMarker01[8] = "MinPHR01"; +static const ALchar magicMarker02[8] = "MinPHR02"; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ -static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/; +static const ALfloat PassthruCoeff = 0.707106781187f/*sqrt(0.5)*/; + +static ATOMIC_FLAG LoadedHrtfLock = ATOMIC_FLAG_INIT; +static struct HrtfEntry *LoadedHrtfs = NULL; -static struct Hrtf *LoadedHrtfs = NULL; -/* Calculate the elevation indices given the polar elevation in radians. - * This will return two indices between 0 and (evcount - 1) and an - * interpolation factor between 0.0 and 1.0. +/* Calculate the elevation index given the polar elevation in radians. This + * will return an index between 0 and (evcount - 1). */ -static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu) +static ALsizei CalcEvIndex(ALsizei evcount, ALfloat ev, ALfloat *mu) { - ev = (F_PI_2 + ev) * (evcount-1) / F_PI; - evidx[0] = fastf2u(ev); - evidx[1] = minu(evidx[0] + 1, evcount-1); - *evmu = ev - evidx[0]; + ALsizei idx; + ev = (F_PI_2+ev) * (evcount-1) / F_PI; + idx = float2int(ev); + + *mu = ev - idx; + return mini(idx, evcount-1); } -/* Calculate the azimuth indices given the polar azimuth in radians. This - * will return two indices between 0 and (azcount - 1) and an interpolation - * factor between 0.0 and 1.0. +/* Calculate the azimuth index given the polar azimuth in radians. This will + * return an index between 0 and (azcount - 1). */ -static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu) +static ALsizei CalcAzIndex(ALsizei azcount, ALfloat az, ALfloat *mu) { - az = (F_TAU + az) * azcount / F_TAU; - azidx[0] = fastf2u(az) % azcount; - azidx[1] = (azidx[0] + 1) % azcount; - *azmu = az - floorf(az); + ALsizei idx; + az = (F_TAU+az) * azcount / F_TAU; + + idx = float2int(az); + *mu = az - idx; + return idx % azcount; } -/* Calculates static HRIR coefficients and delays for the given polar - * elevation and azimuth in radians. Linear interpolation is used to - * increase the apparent resolution of the HRIR data set. The coefficients - * are also normalized and attenuated by the specified gain. +/* Calculates static HRIR coefficients and delays for the given polar elevation + * and azimuth in radians. The coefficients are normalized. */ -void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays) +void GetHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, + ALfloat (*restrict coeffs)[2], ALsizei *delays) { - ALuint evidx[2], lidx[4], ridx[4]; - ALfloat mu[3], blend[4]; - ALuint i; - - /* Claculate elevation indices and interpolation factor. */ - CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]); - - for(i = 0;i < 2;i++) + ALsizei evidx, azidx, idx[4]; + ALsizei evoffset; + ALfloat emu, amu[2]; + ALfloat blend[4]; + ALfloat dirfact; + ALsizei i, c; + + dirfact = 1.0f - (spread / F_TAU); + + /* Claculate the lower elevation index. */ + evidx = CalcEvIndex(Hrtf->evCount, elevation, &emu); + evoffset = Hrtf->evOffset[evidx]; + + /* Calculate lower azimuth index. */ + azidx= CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[0]); + + /* Calculate the lower HRIR indices. */ + idx[0] = evoffset + azidx; + idx[1] = evoffset + ((azidx+1) % Hrtf->azCount[evidx]); + if(evidx < Hrtf->evCount-1) { - ALuint azcount = Hrtf->azCount[evidx[i]]; - ALuint evoffset = Hrtf->evOffset[evidx[i]]; - ALuint azidx[2]; + /* Increment elevation to the next (upper) index. */ + evidx++; + evoffset = Hrtf->evOffset[evidx]; - /* Calculate azimuth indices and interpolation factor for this elevation. */ - CalcAzIndices(azcount, azimuth, azidx, &mu[i]); + /* Calculate upper azimuth index. */ + azidx = CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[1]); - /* Calculate a set of linear HRIR indices for left and right channels. */ - lidx[i*2 + 0] = evoffset + azidx[0]; - lidx[i*2 + 1] = evoffset + azidx[1]; - ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount); - ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount); + /* Calculate the upper HRIR indices. */ + idx[2] = evoffset + azidx; + idx[3] = evoffset + ((azidx+1) % Hrtf->azCount[evidx]); + } + else + { + /* If the lower elevation is the top index, the upper elevation is the + * same as the lower. + */ + amu[1] = amu[0]; + idx[2] = idx[0]; + idx[3] = idx[1]; } - /* Calculate 4 blending weights for 2D bilinear interpolation. */ - blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]); - blend[1] = ( mu[0]) * (1.0f-mu[2]); - blend[2] = (1.0f-mu[1]) * ( mu[2]); - blend[3] = ( mu[1]) * ( mu[2]); - - /* Calculate the HRIR delays using linear interpolation. */ - delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] + - Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) * - dirfact + 0.5f) << HRTFDELAY_BITS; - delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] + - Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) * - dirfact + 0.5f) << HRTFDELAY_BITS; + /* Calculate bilinear blending weights, attenuated according to the + * directional panning factor. + */ + blend[0] = (1.0f-emu) * (1.0f-amu[0]) * dirfact; + blend[1] = (1.0f-emu) * ( amu[0]) * dirfact; + blend[2] = ( emu) * (1.0f-amu[1]) * dirfact; + blend[3] = ( emu) * ( amu[1]) * dirfact; + + /* Calculate the blended HRIR delays. */ + delays[0] = fastf2i( + Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] + + Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3] + ); + delays[1] = fastf2i( + Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] + + Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3] + ); /* Calculate the sample offsets for the HRIR indices. */ - lidx[0] *= Hrtf->irSize; - lidx[1] *= Hrtf->irSize; - lidx[2] *= Hrtf->irSize; - lidx[3] *= Hrtf->irSize; - ridx[0] *= Hrtf->irSize; - ridx[1] *= Hrtf->irSize; - ridx[2] *= Hrtf->irSize; - ridx[3] *= Hrtf->irSize; - - /* Calculate the normalized and attenuated HRIR coefficients using linear - * interpolation when there is enough gain to warrant it. Zero the - * coefficients if gain is too low. - */ - if(gain > 0.0001f) + idx[0] *= Hrtf->irSize; + idx[1] *= Hrtf->irSize; + idx[2] *= Hrtf->irSize; + idx[3] *= Hrtf->irSize; + + ASSUME(Hrtf->irSize >= MIN_IR_SIZE && (Hrtf->irSize%MOD_IR_SIZE) == 0); + coeffs = ASSUME_ALIGNED(coeffs, 16); + /* Calculate the blended HRIR coefficients. */ + coeffs[0][0] = PassthruCoeff * (1.0f-dirfact); + coeffs[0][1] = PassthruCoeff * (1.0f-dirfact); + for(i = 1;i < Hrtf->irSize;i++) { - ALfloat c; - - i = 0; - c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + - Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); - coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); - c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + - Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); - coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); - - for(i = 1;i < Hrtf->irSize;i++) - { - c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + - Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); - coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); - c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + - Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); - coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); - } + coeffs[i][0] = 0.0f; + coeffs[i][1] = 0.0f; } - else + for(c = 0;c < 4;c++) { + const ALfloat (*restrict srccoeffs)[2] = ASSUME_ALIGNED(Hrtf->coeffs+idx[c], 16); for(i = 0;i < Hrtf->irSize;i++) { - coeffs[i][0] = 0.0f; - coeffs[i][1] = 0.0f; + coeffs[i][0] += srccoeffs[i][0] * blend[c]; + coeffs[i][1] += srccoeffs[i][1] * blend[c]; } } } -/* Calculates the moving HRIR target coefficients, target delays, and - * stepping values for the given polar elevation and azimuth in radians. - * Linear interpolation is used to increase the apparent resolution of the - * HRIR data set. The coefficients are also normalized and attenuated by the - * specified gain. Stepping resolution and count is determined using the - * given delta factor between 0.0 and 1.0. - */ -ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep) -{ - ALuint evidx[2], lidx[4], ridx[4]; - ALfloat mu[3], blend[4]; - ALfloat left, right; - ALfloat steps; - ALuint i; - /* Claculate elevation indices and interpolation factor. */ - CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]); - - for(i = 0;i < 2;i++) +void BuildBFormatHrtf(const struct Hrtf *Hrtf, DirectHrtfState *state, ALsizei NumChannels, const struct AngularPoint *AmbiPoints, const ALfloat (*restrict AmbiMatrix)[MAX_AMBI_COEFFS], ALsizei AmbiCount, const ALfloat *restrict AmbiOrderHFGain) +{ +/* Set this to 2 for dual-band HRTF processing. May require a higher quality + * band-splitter, or better calculation of the new IR length to deal with the + * tail generated by the filter. + */ +#define NUM_BANDS 2 + BandSplitter splitter; + ALdouble (*tmpres)[HRIR_LENGTH][2]; + ALsizei *restrict idx; + ALsizei min_delay = HRTF_HISTORY_LENGTH; + ALsizei max_delay = 0; + ALfloat temps[3][HRIR_LENGTH]; + ALsizei max_length; + ALsizei i, c, b; + + idx = al_calloc(DEF_ALIGN, AmbiCount*sizeof(*idx)); + + for(c = 0;c < AmbiCount;c++) { - ALuint azcount = Hrtf->azCount[evidx[i]]; - ALuint evoffset = Hrtf->evOffset[evidx[i]]; - ALuint azidx[2]; + ALuint evidx, azidx; + ALuint evoffset; + ALuint azcount; - /* Calculate azimuth indices and interpolation factor for this elevation. */ - CalcAzIndices(azcount, azimuth, azidx, &mu[i]); + /* Calculate elevation index. */ + evidx = (ALsizei)((F_PI_2+AmbiPoints[c].Elev) * (Hrtf->evCount-1) / F_PI + 0.5f); + evidx = clampi(evidx, 0, Hrtf->evCount-1); - /* Calculate a set of linear HRIR indices for left and right channels. */ - lidx[i*2 + 0] = evoffset + azidx[0]; - lidx[i*2 + 1] = evoffset + azidx[1]; - ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount); - ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount); - } - - // Calculate the stepping parameters. - steps = maxf(floorf(delta*Hrtf->sampleRate + 0.5f), 1.0f); - delta = 1.0f / steps; + azcount = Hrtf->azCount[evidx]; + evoffset = Hrtf->evOffset[evidx]; - /* Calculate 4 blending weights for 2D bilinear interpolation. */ - blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]); - blend[1] = ( mu[0]) * (1.0f-mu[2]); - blend[2] = (1.0f-mu[1]) * ( mu[2]); - blend[3] = ( mu[1]) * ( mu[2]); + /* Calculate azimuth index for this elevation. */ + azidx = (ALsizei)((F_TAU+AmbiPoints[c].Azim) * azcount / F_TAU + 0.5f) % azcount; - /* Calculate the HRIR delays using linear interpolation. Then calculate - * the delay stepping values using the target and previous running - * delays. - */ - left = (ALfloat)(delays[0] - (delayStep[0] * counter)); - right = (ALfloat)(delays[1] - (delayStep[1] * counter)); + /* Calculate indices for left and right channels. */ + idx[c] = evoffset + azidx; - delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] + - Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) * - dirfact + 0.5f) << HRTFDELAY_BITS; - delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] + - Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) * - dirfact + 0.5f) << HRTFDELAY_BITS; + min_delay = mini(min_delay, mini(Hrtf->delays[idx[c]][0], Hrtf->delays[idx[c]][1])); + max_delay = maxi(max_delay, maxi(Hrtf->delays[idx[c]][0], Hrtf->delays[idx[c]][1])); + } - delayStep[0] = fastf2i(delta * (delays[0] - left)); - delayStep[1] = fastf2i(delta * (delays[1] - right)); + tmpres = al_calloc(16, NumChannels * sizeof(*tmpres)); - /* Calculate the sample offsets for the HRIR indices. */ - lidx[0] *= Hrtf->irSize; - lidx[1] *= Hrtf->irSize; - lidx[2] *= Hrtf->irSize; - lidx[3] *= Hrtf->irSize; - ridx[0] *= Hrtf->irSize; - ridx[1] *= Hrtf->irSize; - ridx[2] *= Hrtf->irSize; - ridx[3] *= Hrtf->irSize; - - /* Calculate the normalized and attenuated target HRIR coefficients using - * linear interpolation when there is enough gain to warrant it. Zero - * the target coefficients if gain is too low. Then calculate the - * coefficient stepping values using the target and previous running - * coefficients. - */ - if(gain > 0.0001f) + memset(temps, 0, sizeof(temps)); + bandsplit_init(&splitter, 400.0f / (ALfloat)Hrtf->sampleRate); + for(c = 0;c < AmbiCount;c++) { - ALfloat c; - - i = 0; - left = coeffs[i][0] - (coeffStep[i][0] * counter); - right = coeffs[i][1] - (coeffStep[i][1] * counter); + const ALfloat (*fir)[2] = &Hrtf->coeffs[idx[c] * Hrtf->irSize]; + ALsizei ldelay = Hrtf->delays[idx[c]][0] - min_delay; + ALsizei rdelay = Hrtf->delays[idx[c]][1] - min_delay; - c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + - Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); - coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); - c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + - Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); - coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); - - coeffStep[i][0] = delta * (coeffs[i][0] - left); - coeffStep[i][1] = delta * (coeffs[i][1] - right); - - for(i = 1;i < Hrtf->irSize;i++) + if(NUM_BANDS == 1) + { + for(i = 0;i < NumChannels;++i) + { + ALdouble mult = (ALdouble)AmbiOrderHFGain[(ALsizei)sqrt(i)] * AmbiMatrix[c][i]; + ALsizei lidx = ldelay, ridx = rdelay; + ALsizei j = 0; + while(lidx < HRIR_LENGTH && ridx < HRIR_LENGTH && j < Hrtf->irSize) + { + tmpres[i][lidx++][0] += fir[j][0] * mult; + tmpres[i][ridx++][1] += fir[j][1] * mult; + j++; + } + } + } + else { - left = coeffs[i][0] - (coeffStep[i][0] * counter); - right = coeffs[i][1] - (coeffStep[i][1] * counter); + /* Band-split left HRIR into low and high frequency responses. */ + bandsplit_clear(&splitter); + for(i = 0;i < Hrtf->irSize;i++) + temps[2][i] = fir[i][0]; + bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); + + /* Apply left ear response with delay. */ + for(i = 0;i < NumChannels;++i) + { + ALfloat hfgain = AmbiOrderHFGain[(ALsizei)sqrt(i)]; + for(b = 0;b < NUM_BANDS;b++) + { + ALdouble mult = AmbiMatrix[c][i] * (ALdouble)((b==0) ? hfgain : 1.0); + ALsizei lidx = ldelay; + ALsizei j = 0; + while(lidx < HRIR_LENGTH) + tmpres[i][lidx++][0] += temps[b][j++] * mult; + } + } - c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + - Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); - coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); - c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + - Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); - coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); + /* Band-split right HRIR into low and high frequency responses. */ + bandsplit_clear(&splitter); + for(i = 0;i < Hrtf->irSize;i++) + temps[2][i] = fir[i][1]; + bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); - coeffStep[i][0] = delta * (coeffs[i][0] - left); - coeffStep[i][1] = delta * (coeffs[i][1] - right); + /* Apply right ear response with delay. */ + for(i = 0;i < NumChannels;++i) + { + ALfloat hfgain = AmbiOrderHFGain[(ALsizei)sqrt(i)]; + for(b = 0;b < NUM_BANDS;b++) + { + ALdouble mult = AmbiMatrix[c][i] * (ALdouble)((b==0) ? hfgain : 1.0); + ALsizei ridx = rdelay; + ALsizei j = 0; + while(ridx < HRIR_LENGTH) + tmpres[i][ridx++][1] += temps[b][j++] * mult; + } + } } } - else + + for(i = 0;i < NumChannels;++i) { - for(i = 0;i < Hrtf->irSize;i++) + int idx; + for(idx = 0;idx < HRIR_LENGTH;idx++) { - left = coeffs[i][0] - (coeffStep[i][0] * counter); - right = coeffs[i][1] - (coeffStep[i][1] * counter); - - coeffs[i][0] = 0.0f; - coeffs[i][1] = 0.0f; - - coeffStep[i][0] = delta * -left; - coeffStep[i][1] = delta * -right; + state->Chan[i].Coeffs[idx][0] = (ALfloat)tmpres[i][idx][0]; + state->Chan[i].Coeffs[idx][1] = (ALfloat)tmpres[i][idx][1]; } } + al_free(tmpres); + tmpres = NULL; + al_free(idx); + idx = NULL; - /* The stepping count is the number of samples necessary for the HRIR to - * complete its transition. The mixer will only apply stepping for this - * many samples. - */ - return fastf2u(steps); + if(NUM_BANDS == 1) + max_length = mini(max_delay-min_delay + Hrtf->irSize, HRIR_LENGTH); + else + { + /* Increase the IR size by 2/3rds to account for the tail generated by + * the band-split filter. + */ + const ALsizei irsize = mini(Hrtf->irSize*5/3, HRIR_LENGTH); + max_length = mini(max_delay-min_delay + irsize, HRIR_LENGTH); + } + /* Round up to the next IR size multiple. */ + max_length += MOD_IR_SIZE-1; + max_length -= max_length%MOD_IR_SIZE; + + TRACE("Skipped delay: %d, max delay: %d, new FIR length: %d\n", + min_delay, max_delay-min_delay, max_length); + state->IrSize = max_length; +#undef NUM_BANDS } -/* Calculates HRTF coefficients for B-Format channels (only up to first-order). - * Note that these will decode a B-Format output mix, which uses FuMa ordering - * and scaling, not N3D! - */ -void GetBFormatHrtfCoeffs(const struct Hrtf *Hrtf, const ALuint num_chans, ALfloat (**coeffs_list)[2], ALuint **delay_list) +static struct Hrtf *CreateHrtfStore(ALuint rate, ALsizei irSize, + ALfloat distance, ALsizei evCount, ALsizei irCount, const ALubyte *azCount, + const ALushort *evOffset, const ALfloat (*coeffs)[2], const ALubyte (*delays)[2], + const char *filename) { - ALuint elev_idx, azi_idx; - ALfloat scale; - ALuint i, c; - - assert(num_chans <= 4); - - for(c = 0;c < num_chans;c++) - { - ALfloat (*coeffs)[2] = coeffs_list[c]; - ALuint *delay = delay_list[c]; - - for(i = 0;i < Hrtf->irSize;i++) - { - coeffs[i][0] = 0.0f; - coeffs[i][1] = 0.0f; - } - delay[0] = 0; - delay[1] = 0; - } - - /* NOTE: HRTF coefficients are generated by combining all the HRIRs in the - * dataset, with each entry scaled according to how much it contributes to - * the given B-Format channel based on its direction (including negative - * contributions!). - */ - scale = 0.0f; - for(elev_idx = 0;elev_idx < Hrtf->evCount;elev_idx++) + struct Hrtf *Hrtf; + size_t total; + + total = sizeof(struct Hrtf); + total += sizeof(Hrtf->azCount[0])*evCount; + total = RoundUp(total, sizeof(ALushort)); /* Align for ushort fields */ + total += sizeof(Hrtf->evOffset[0])*evCount; + total = RoundUp(total, 16); /* Align for coefficients using SIMD */ + total += sizeof(Hrtf->coeffs[0])*irSize*irCount; + total += sizeof(Hrtf->delays[0])*irCount; + + Hrtf = al_calloc(16, total); + if(Hrtf == NULL) + ERR("Out of memory allocating storage for %s.\n", filename); + else { - ALfloat elev = (ALfloat)elev_idx/(ALfloat)(Hrtf->evCount-1)*F_PI - F_PI_2; - ALuint evoffset = Hrtf->evOffset[elev_idx]; - ALuint azcount = Hrtf->azCount[elev_idx]; + uintptr_t offset = sizeof(struct Hrtf); + char *base = (char*)Hrtf; + ALushort *_evOffset; + ALubyte *_azCount; + ALubyte (*_delays)[2]; + ALfloat (*_coeffs)[2]; + ALsizei i; + + InitRef(&Hrtf->ref, 0); + Hrtf->sampleRate = rate; + Hrtf->irSize = irSize; + Hrtf->distance = distance; + Hrtf->evCount = evCount; - scale += (ALfloat)azcount; + /* Set up pointers to storage following the main HRTF struct. */ + _azCount = (ALubyte*)(base + offset); + offset += sizeof(_azCount[0])*evCount; - for(azi_idx = 0;azi_idx < azcount;azi_idx++) - { - ALuint lidx, ridx; - ALfloat ambi_coeffs[4]; - ALfloat az, gain; - ALfloat x, y, z; + offset = RoundUp(offset, sizeof(ALushort)); /* Align for ushort fields */ + _evOffset = (ALushort*)(base + offset); + offset += sizeof(_evOffset[0])*evCount; - lidx = evoffset + azi_idx; - ridx = evoffset + ((azcount-azi_idx) % azcount); + offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */ + _coeffs = (ALfloat(*)[2])(base + offset); + offset += sizeof(_coeffs[0])*irSize*irCount; - az = (ALfloat)azi_idx / (ALfloat)azcount * F_TAU; - if(az > F_PI) az -= F_TAU; + _delays = (ALubyte(*)[2])(base + offset); + offset += sizeof(_delays[0])*irCount; - x = cosf(-az) * cosf(elev); - y = sinf(-az) * cosf(elev); - z = sinf(elev); + assert(offset == total); - ambi_coeffs[0] = 1.414213562f; - ambi_coeffs[1] = x; - ambi_coeffs[2] = y; - ambi_coeffs[3] = z; + /* Copy input data to storage. */ + for(i = 0;i < evCount;i++) _azCount[i] = azCount[i]; + for(i = 0;i < evCount;i++) _evOffset[i] = evOffset[i]; + for(i = 0;i < irSize*irCount;i++) + { + _coeffs[i][0] = coeffs[i][0]; + _coeffs[i][1] = coeffs[i][1]; + } + for(i = 0;i < irCount;i++) + { + _delays[i][0] = delays[i][0]; + _delays[i][1] = delays[i][1]; + } - for(c = 0;c < num_chans;c++) - { - ALfloat (*coeffs)[2] = coeffs_list[c]; - ALuint *delay = delay_list[c]; + /* Finally, assign the storage pointers. */ + Hrtf->azCount = _azCount; + Hrtf->evOffset = _evOffset; + Hrtf->coeffs = _coeffs; + Hrtf->delays = _delays; + } - /* NOTE: Always include the total delay average since the - * channels need to have matching delays. */ - delay[0] += Hrtf->delays[lidx]; - delay[1] += Hrtf->delays[ridx]; + return Hrtf; +} - gain = ambi_coeffs[c]; - if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) - continue; +static ALubyte GetLE_ALubyte(const ALubyte **data, size_t *len) +{ + ALubyte ret = (*data)[0]; + *data += 1; *len -= 1; + return ret; +} - for(i = 0;i < Hrtf->irSize;i++) - { - coeffs[i][0] += Hrtf->coeffs[lidx*Hrtf->irSize + i]*(1.0f/32767.0f) * gain; - coeffs[i][1] += Hrtf->coeffs[ridx*Hrtf->irSize + i]*(1.0f/32767.0f) * gain; - } - } - } - } +static ALshort GetLE_ALshort(const ALubyte **data, size_t *len) +{ + ALshort ret = (*data)[0] | ((*data)[1]<<8); + *data += 2; *len -= 2; + return ret; +} - scale = 1.0f/scale; +static ALushort GetLE_ALushort(const ALubyte **data, size_t *len) +{ + ALushort ret = (*data)[0] | ((*data)[1]<<8); + *data += 2; *len -= 2; + return ret; +} - for(c = 0;c < num_chans;c++) - { - ALfloat (*coeffs)[2] = coeffs_list[c]; - ALuint *delay = delay_list[c]; +static ALint GetLE_ALint24(const ALubyte **data, size_t *len) +{ + ALint ret = (*data)[0] | ((*data)[1]<<8) | ((*data)[2]<<16); + *data += 3; *len -= 3; + return (ret^0x800000) - 0x800000; +} - for(i = 0;i < Hrtf->irSize;i++) - { - coeffs[i][0] *= scale; - coeffs[i][1] *= scale; - } - delay[0] = minu((ALuint)((ALfloat)delay[0] * scale), HRTF_HISTORY_LENGTH-1); - delay[0] <<= HRTFDELAY_BITS; - delay[1] = minu((ALuint)((ALfloat)delay[1] * scale), HRTF_HISTORY_LENGTH-1); - delay[1] <<= HRTFDELAY_BITS; - } +static ALuint GetLE_ALuint(const ALubyte **data, size_t *len) +{ + ALuint ret = (*data)[0] | ((*data)[1]<<8) | ((*data)[2]<<16) | ((*data)[3]<<24); + *data += 4; *len -= 4; + return ret; } +static const ALubyte *Get_ALubytePtr(const ALubyte **data, size_t *len, size_t size) +{ + const ALubyte *ret = *data; + *data += size; *len -= size; + return ret; +} -static struct Hrtf *LoadHrtf00(FILE *f) +static struct Hrtf *LoadHrtf00(const ALubyte *data, size_t datalen, const char *filename) { - const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; - ALuint rate = 0, irCount = 0; + ALuint rate = 0; + ALushort irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; - ALshort *coeffs = NULL; - ALubyte *delays = NULL; - ALuint i, j; + ALfloat (*coeffs)[2] = NULL; + ALubyte (*delays)[2] = NULL; + ALsizei i, j; + + if(datalen < 9) + { + ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, 9, datalen); + return NULL; + } - rate = fgetc(f); - rate |= fgetc(f)<<8; - rate |= fgetc(f)<<16; - rate |= fgetc(f)<<24; + rate = GetLE_ALuint(&data, &datalen); - irCount = fgetc(f); - irCount |= fgetc(f)<<8; + irCount = GetLE_ALushort(&data, &datalen); - irSize = fgetc(f); - irSize |= fgetc(f)<<8; + irSize = GetLE_ALushort(&data, &datalen); - evCount = fgetc(f); + evCount = GetLE_ALubyte(&data, &datalen); if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { @@ -459,10 +496,15 @@ static struct Hrtf *LoadHrtf00(FILE *f) evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } - if(failed) return NULL; + if(datalen < evCount*2u) + { + ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, evCount*2, datalen); + return NULL; + } + azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) @@ -473,12 +515,10 @@ static struct Hrtf *LoadHrtf00(FILE *f) if(!failed) { - evOffset[0] = fgetc(f); - evOffset[0] |= fgetc(f)<<8; + evOffset[0] = GetLE_ALushort(&data, &datalen); for(i = 1;i < evCount;i++) { - evOffset[i] = fgetc(f); - evOffset[i] |= fgetc(f)<<8; + evOffset[i] = GetLE_ALushort(&data, &datalen); if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", @@ -523,86 +563,89 @@ static struct Hrtf *LoadHrtf00(FILE *f) if(!failed) { - for(i = 0;i < irCount*irSize;i+=irSize) + size_t reqsize = 2*irSize*irCount + irCount; + if(datalen < reqsize) + { + ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT")\n", + filename, reqsize, datalen); + failed = AL_TRUE; + } + } + + if(!failed) + { + for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) - { - ALshort coeff; - coeff = fgetc(f); - coeff |= fgetc(f)<<8; - coeffs[i+j] = coeff; - } + coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; } + for(i = 0;i < irCount;i++) { - delays[i] = fgetc(f); - if(delays[i] > maxDelay) + delays[i][0] = GetLE_ALubyte(&data, &datalen); + if(delays[i][0] > MAX_HRIR_DELAY) { - ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); + ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } } - - if(feof(f)) - { - ERR("Premature end of data\n"); - failed = AL_TRUE; - } } if(!failed) { - Hrtf = malloc(sizeof(struct Hrtf)); - if(Hrtf == NULL) + /* Mirror the left ear responses to the right ear. */ + for(i = 0;i < evCount;i++) { - ERR("Out of memory.\n"); - failed = AL_TRUE; + ALushort evoffset = evOffset[i]; + ALubyte azcount = azCount[i]; + for(j = 0;j < azcount;j++) + { + ALsizei lidx = evoffset + j; + ALsizei ridx = evoffset + ((azcount-j) % azcount); + ALsizei k; + + for(k = 0;k < irSize;k++) + coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; + delays[ridx][1] = delays[lidx][0]; + } } - } - if(!failed) - { - Hrtf->sampleRate = rate; - Hrtf->irSize = irSize; - Hrtf->evCount = evCount; - Hrtf->azCount = azCount; - Hrtf->evOffset = evOffset; - Hrtf->coeffs = coeffs; - Hrtf->delays = delays; - AL_STRING_INIT(Hrtf->filename); - Hrtf->next = NULL; - return Hrtf; + Hrtf = CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount, + evOffset, coeffs, delays, filename); } free(azCount); free(evOffset); free(coeffs); free(delays); - return NULL; + return Hrtf; } - -static struct Hrtf *LoadHrtf01(FILE *f) +static struct Hrtf *LoadHrtf01(const ALubyte *data, size_t datalen, const char *filename) { - const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; - ALuint rate = 0, irCount = 0; - ALubyte irSize = 0, evCount = 0; - ALubyte *azCount = NULL; + ALuint rate = 0; + ALushort irCount = 0; + ALushort irSize = 0; + ALubyte evCount = 0; + const ALubyte *azCount = NULL; ALushort *evOffset = NULL; - ALshort *coeffs = NULL; - ALubyte *delays = NULL; - ALuint i, j; + ALfloat (*coeffs)[2] = NULL; + ALubyte (*delays)[2] = NULL; + ALsizei i, j; + + if(datalen < 6) + { + ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 6, datalen); + return NULL; + } - rate = fgetc(f); - rate |= fgetc(f)<<8; - rate |= fgetc(f)<<16; - rate |= fgetc(f)<<24; + rate = GetLE_ALuint(&data, &datalen); - irSize = fgetc(f); + irSize = GetLE_ALubyte(&data, &datalen); - evCount = fgetc(f); + evCount = GetLE_ALubyte(&data, &datalen); if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { @@ -616,11 +659,17 @@ static struct Hrtf *LoadHrtf01(FILE *f) evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } - if(failed) return NULL; - azCount = malloc(sizeof(azCount[0])*evCount); + if(datalen < evCount) + { + ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, evCount, datalen); + return NULL; + } + + azCount = Get_ALubytePtr(&data, &datalen, evCount); + evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { @@ -632,7 +681,6 @@ static struct Hrtf *LoadHrtf01(FILE *f) { for(i = 0;i < evCount;i++) { - azCount[i] = fgetc(f); if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", @@ -663,37 +711,193 @@ static struct Hrtf *LoadHrtf01(FILE *f) if(!failed) { - for(i = 0;i < irCount*irSize;i+=irSize) + size_t reqsize = 2*irSize*irCount + irCount; + if(datalen < reqsize) + { + ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n", + filename, reqsize, datalen); + failed = AL_TRUE; + } + } + + if(!failed) + { + for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) - { - ALshort coeff; - coeff = fgetc(f); - coeff |= fgetc(f)<<8; - coeffs[i+j] = coeff; - } + coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; } + for(i = 0;i < irCount;i++) { - delays[i] = fgetc(f); - if(delays[i] > maxDelay) + delays[i][0] = GetLE_ALubyte(&data, &datalen); + if(delays[i][0] > MAX_HRIR_DELAY) { - ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); + ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } } + } - if(feof(f)) + if(!failed) + { + /* Mirror the left ear responses to the right ear. */ + for(i = 0;i < evCount;i++) { - ERR("Premature end of data\n"); + ALushort evoffset = evOffset[i]; + ALubyte azcount = azCount[i]; + for(j = 0;j < azcount;j++) + { + ALsizei lidx = evoffset + j; + ALsizei ridx = evoffset + ((azcount-j) % azcount); + ALsizei k; + + for(k = 0;k < irSize;k++) + coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; + delays[ridx][1] = delays[lidx][0]; + } + } + + Hrtf = CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount, + evOffset, coeffs, delays, filename); + } + + free(evOffset); + free(coeffs); + free(delays); + return Hrtf; +} + +#define SAMPLETYPE_S16 0 +#define SAMPLETYPE_S24 1 + +#define CHANTYPE_LEFTONLY 0 +#define CHANTYPE_LEFTRIGHT 1 + +static struct Hrtf *LoadHrtf02(const ALubyte *data, size_t datalen, const char *filename) +{ + struct Hrtf *Hrtf = NULL; + ALboolean failed = AL_FALSE; + ALuint rate = 0; + ALubyte sampleType; + ALubyte channelType; + ALushort irCount = 0; + ALushort irSize = 0; + ALubyte fdCount = 0; + ALushort distance = 0; + ALubyte evCount = 0; + const ALubyte *azCount = NULL; + ALushort *evOffset = NULL; + ALfloat (*coeffs)[2] = NULL; + ALubyte (*delays)[2] = NULL; + ALsizei i, j; + + if(datalen < 8) + { + ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 8, datalen); + return NULL; + } + + rate = GetLE_ALuint(&data, &datalen); + sampleType = GetLE_ALubyte(&data, &datalen); + channelType = GetLE_ALubyte(&data, &datalen); + + irSize = GetLE_ALubyte(&data, &datalen); + + fdCount = GetLE_ALubyte(&data, &datalen); + + if(sampleType > SAMPLETYPE_S24) + { + ERR("Unsupported sample type: %d\n", sampleType); + failed = AL_TRUE; + } + if(channelType > CHANTYPE_LEFTRIGHT) + { + ERR("Unsupported channel type: %d\n", channelType); + failed = AL_TRUE; + } + + if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) + { + ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", + irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); + failed = AL_TRUE; + } + if(fdCount != 1) + { + ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n", + evCount, MIN_FD_COUNT, MAX_FD_COUNT); + failed = AL_TRUE; + } + if(failed) + return NULL; + + for(i = 0;i < fdCount;i++) + { + if(datalen < 3) + { + ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 3, datalen); + return NULL; + } + + distance = GetLE_ALushort(&data, &datalen); + if(distance < MIN_FD_DISTANCE || distance > MAX_FD_DISTANCE) + { + ERR("Unsupported field distance: distance=%d (%dmm to %dmm)\n", + distance, MIN_FD_DISTANCE, MAX_FD_DISTANCE); failed = AL_TRUE; } + + evCount = GetLE_ALubyte(&data, &datalen); + if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) + { + ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", + evCount, MIN_EV_COUNT, MAX_EV_COUNT); + failed = AL_TRUE; + } + if(failed) + return NULL; + + if(datalen < evCount) + { + ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, evCount, datalen); + return NULL; + } + + azCount = Get_ALubytePtr(&data, &datalen, evCount); + for(j = 0;j < evCount;j++) + { + if(azCount[j] < MIN_AZ_COUNT || azCount[j] > MAX_AZ_COUNT) + { + ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", + j, azCount[j], MIN_AZ_COUNT, MAX_AZ_COUNT); + failed = AL_TRUE; + } + } + } + if(failed) + return NULL; + + evOffset = malloc(sizeof(evOffset[0])*evCount); + if(azCount == NULL || evOffset == NULL) + { + ERR("Out of memory.\n"); + failed = AL_TRUE; } if(!failed) { - Hrtf = malloc(sizeof(struct Hrtf)); - if(Hrtf == NULL) + evOffset[0] = 0; + irCount = azCount[0]; + for(i = 1;i < evCount;i++) + { + evOffset[i] = evOffset[i-1] + azCount[i-1]; + irCount += azCount[i]; + } + + coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); + delays = malloc(sizeof(delays[0])*irCount); + if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; @@ -702,199 +906,560 @@ static struct Hrtf *LoadHrtf01(FILE *f) if(!failed) { - Hrtf->sampleRate = rate; - Hrtf->irSize = irSize; - Hrtf->evCount = evCount; - Hrtf->azCount = azCount; - Hrtf->evOffset = evOffset; - Hrtf->coeffs = coeffs; - Hrtf->delays = delays; - AL_STRING_INIT(Hrtf->filename); - Hrtf->next = NULL; - return Hrtf; + size_t reqsize = 2*irSize*irCount + irCount; + if(datalen < reqsize) + { + ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n", + filename, reqsize, datalen); + failed = AL_TRUE; + } + } + + if(!failed) + { + if(channelType == CHANTYPE_LEFTONLY) + { + if(sampleType == SAMPLETYPE_S16) + for(i = 0;i < irCount;i++) + { + for(j = 0;j < irSize;j++) + coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; + } + else if(sampleType == SAMPLETYPE_S24) + for(i = 0;i < irCount;i++) + { + for(j = 0;j < irSize;j++) + coeffs[i*irSize + j][0] = GetLE_ALint24(&data, &datalen) / 8388608.0f; + } + + for(i = 0;i < irCount;i++) + { + delays[i][0] = GetLE_ALubyte(&data, &datalen); + if(delays[i][0] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + } + } + else if(channelType == CHANTYPE_LEFTRIGHT) + { + if(sampleType == SAMPLETYPE_S16) + for(i = 0;i < irCount;i++) + { + for(j = 0;j < irSize;j++) + { + coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; + coeffs[i*irSize + j][1] = GetLE_ALshort(&data, &datalen) / 32768.0f; + } + } + else if(sampleType == SAMPLETYPE_S24) + for(i = 0;i < irCount;i++) + { + for(j = 0;j < irSize;j++) + { + coeffs[i*irSize + j][0] = GetLE_ALint24(&data, &datalen) / 8388608.0f; + coeffs[i*irSize + j][1] = GetLE_ALint24(&data, &datalen) / 8388608.0f; + } + } + + for(i = 0;i < irCount;i++) + { + delays[i][0] = GetLE_ALubyte(&data, &datalen); + if(delays[i][0] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + delays[i][1] = GetLE_ALubyte(&data, &datalen); + if(delays[i][1] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + } + } + } + + if(!failed) + { + if(channelType == CHANTYPE_LEFTONLY) + { + /* Mirror the left ear responses to the right ear. */ + for(i = 0;i < evCount;i++) + { + ALushort evoffset = evOffset[i]; + ALubyte azcount = azCount[i]; + for(j = 0;j < azcount;j++) + { + ALsizei lidx = evoffset + j; + ALsizei ridx = evoffset + ((azcount-j) % azcount); + ALsizei k; + + for(k = 0;k < irSize;k++) + coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; + delays[ridx][1] = delays[lidx][0]; + } + } + } + + Hrtf = CreateHrtfStore(rate, irSize, + (ALfloat)distance / 1000.0f, evCount, irCount, azCount, evOffset, + coeffs, delays, filename + ); } - free(azCount); free(evOffset); free(coeffs); free(delays); - return NULL; + return Hrtf; } -static void AddFileEntry(vector_HrtfEntry *list, al_string *filename) +static void AddFileEntry(vector_EnumeratedHrtf *list, const_al_string filename) { - HrtfEntry entry = { AL_STRING_INIT_STATIC(), *filename, NULL }; - HrtfEntry *iter; + EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL }; + struct HrtfEntry *loaded_entry; + const EnumeratedHrtf *iter; const char *name; + const char *ext; int i; - name = strrchr(al_string_get_cstr(entry.filename), '/'); - if(!name) name = strrchr(al_string_get_cstr(entry.filename), '\\'); - if(!name) name = al_string_get_cstr(entry.filename); - else ++name; - - entry.hrtf = LoadedHrtfs; - while(entry.hrtf) + /* Check if this file has already been loaded globally. */ + loaded_entry = LoadedHrtfs; + while(loaded_entry) { - if(al_string_cmp(entry.filename, entry.hrtf->filename) == 0) + if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0) + { + /* Check if this entry has already been added to the list. */ +#define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf) + VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY); +#undef MATCH_ENTRY + if(iter != VECTOR_END(*list)) + { + TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename)); + return; + } + break; - entry.hrtf = entry.hrtf->next; + } + loaded_entry = loaded_entry->next; } - if(!entry.hrtf) + if(!loaded_entry) { - struct Hrtf *hrtf = NULL; - ALchar magic[8]; - FILE *f; + TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename)); + + loaded_entry = al_calloc(DEF_ALIGN, + FAM_SIZE(struct HrtfEntry, filename, alstr_length(filename)+1) + ); + loaded_entry->next = LoadedHrtfs; + loaded_entry->handle = NULL; + strcpy(loaded_entry->filename, alstr_get_cstr(filename)); + LoadedHrtfs = loaded_entry; + } - TRACE("Loading %s...\n", al_string_get_cstr(entry.filename)); - f = al_fopen(al_string_get_cstr(entry.filename), "rb"); - if(f == NULL) + /* TODO: Get a human-readable name from the HRTF data (possibly coming in a + * format update). */ + name = strrchr(alstr_get_cstr(filename), '/'); + if(!name) name = strrchr(alstr_get_cstr(filename), '\\'); + if(!name) name = alstr_get_cstr(filename); + else ++name; + + ext = strrchr(name, '.'); + + i = 0; + do { + if(!ext) + alstr_copy_cstr(&entry.name, name); + else + alstr_copy_range(&entry.name, name, ext); + if(i != 0) { - ERR("Could not open %s\n", al_string_get_cstr(entry.filename)); - goto error; + char str[64]; + snprintf(str, sizeof(str), " #%d", i+1); + alstr_append_cstr(&entry.name, str); } + ++i; - if(fread(magic, 1, sizeof(magic), f) != sizeof(magic)) - ERR("Failed to read header from %s\n", al_string_get_cstr(entry.filename)); - else +#define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0) + VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME); +#undef MATCH_NAME + } while(iter != VECTOR_END(*list)); + entry.hrtf = loaded_entry; + + TRACE("Adding entry \"%s\" from file \"%s\"\n", alstr_get_cstr(entry.name), + alstr_get_cstr(filename)); + VECTOR_PUSH_BACK(*list, entry); +} + +/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer + * for input instead of opening the given filename. + */ +static void AddBuiltInEntry(vector_EnumeratedHrtf *list, const_al_string filename, ALuint residx) +{ + EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL }; + struct HrtfEntry *loaded_entry; + struct Hrtf *hrtf = NULL; + const EnumeratedHrtf *iter; + const char *name; + const char *ext; + int i; + + loaded_entry = LoadedHrtfs; + while(loaded_entry) + { + if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0) { - if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) - { - TRACE("Detected data set format v0\n"); - hrtf = LoadHrtf00(f); - } - else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) +#define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf) + VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY); +#undef MATCH_ENTRY + if(iter != VECTOR_END(*list)) { - TRACE("Detected data set format v1\n"); - hrtf = LoadHrtf01(f); + TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename)); + return; } - else - ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(entry.filename), magic); - } - fclose(f); - if(!hrtf) - { - ERR("Failed to load %s\n", al_string_get_cstr(entry.filename)); - goto error; + break; } + loaded_entry = loaded_entry->next; + } - al_string_copy(&hrtf->filename, entry.filename); - hrtf->next = LoadedHrtfs; - LoadedHrtfs = hrtf; - TRACE("Loaded HRTF support for format: %s %uhz\n", - DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); - entry.hrtf = hrtf; + if(!loaded_entry) + { + size_t namelen = alstr_length(filename)+32; + + TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename)); + + loaded_entry = al_calloc(DEF_ALIGN, + FAM_SIZE(struct HrtfEntry, filename, namelen) + ); + loaded_entry->next = LoadedHrtfs; + loaded_entry->handle = hrtf; + snprintf(loaded_entry->filename, namelen, "!%u_%s", + residx, alstr_get_cstr(filename)); + LoadedHrtfs = loaded_entry; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ + name = strrchr(alstr_get_cstr(filename), '/'); + if(!name) name = strrchr(alstr_get_cstr(filename), '\\'); + if(!name) name = alstr_get_cstr(filename); + else ++name; + + ext = strrchr(name, '.'); i = 0; do { - al_string_copy_cstr(&entry.name, name); + if(!ext) + alstr_copy_cstr(&entry.name, name); + else + alstr_copy_range(&entry.name, name, ext); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); - al_string_append_cstr(&entry.name, str); + alstr_append_cstr(&entry.name, str); } ++i; -#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0) - VECTOR_FIND_IF(iter, HrtfEntry, *list, MATCH_NAME); +#define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0) + VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME); #undef MATCH_NAME - } while(iter != VECTOR_ITER_END(*list)); + } while(iter != VECTOR_END(*list)); + entry.hrtf = loaded_entry; - TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name), - al_string_get_cstr(entry.filename)); + TRACE("Adding built-in entry \"%s\"\n", alstr_get_cstr(entry.name)); VECTOR_PUSH_BACK(*list, entry); - return; +} + + +#define IDR_DEFAULT_44100_MHR 1 +#define IDR_DEFAULT_48000_MHR 2 + +#ifndef ALSOFT_EMBED_HRTF_DATA -error: - al_string_deinit(&entry.filename); +static const ALubyte *GetResource(int UNUSED(name), size_t *size) +{ + *size = 0; + return NULL; +} + +#else + +#include "default-44100.mhr.h" +#include "default-48000.mhr.h" + +static const ALubyte *GetResource(int name, size_t *size) +{ + if(name == IDR_DEFAULT_44100_MHR) + { + *size = sizeof(hrtf_default_44100); + return hrtf_default_44100; + } + if(name == IDR_DEFAULT_48000_MHR) + { + *size = sizeof(hrtf_default_48000); + return hrtf_default_48000; + } + *size = 0; + return NULL; } +#endif -vector_HrtfEntry EnumerateHrtf(const_al_string devname) +vector_EnumeratedHrtf EnumerateHrtf(const_al_string devname) { - vector_HrtfEntry list = VECTOR_INIT_STATIC(); - const char *fnamelist = "default-%r.mhr"; + vector_EnumeratedHrtf list = VECTOR_INIT_STATIC(); + const char *defaulthrtf = ""; + const char *pathlist = ""; + bool usedefaults = true; - ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf_tables", &fnamelist); - while(fnamelist && *fnamelist) + if(ConfigValueStr(alstr_get_cstr(devname), NULL, "hrtf-paths", &pathlist)) { - while(isspace(*fnamelist) || *fnamelist == ',') - fnamelist++; - if(*fnamelist != '\0') + al_string pname = AL_STRING_INIT_STATIC(); + while(pathlist && *pathlist) { const char *next, *end; - next = strchr(fnamelist, ','); - if(!next) - end = fnamelist + strlen(fnamelist); - else + while(isspace(*pathlist) || *pathlist == ',') + pathlist++; + if(*pathlist == '\0') + continue; + + next = strchr(pathlist, ','); + if(next) end = next++; + else + { + end = pathlist + strlen(pathlist); + usedefaults = false; + } - while(end != fnamelist && isspace(*(end-1))) + while(end != pathlist && isspace(*(end-1))) --end; - if(end != fnamelist) + if(end != pathlist) { - al_string fname = AL_STRING_INIT_STATIC(); vector_al_string flist; + size_t i; - al_string_append_range(&fname, fnamelist, end); + alstr_copy_range(&pname, pathlist, end); - flist = SearchDataFiles(al_string_get_cstr(fname), "openal/hrtf"); - VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list); + flist = SearchDataFiles(".mhr", alstr_get_cstr(pname)); + for(i = 0;i < VECTOR_SIZE(flist);i++) + AddFileEntry(&list, VECTOR_ELEM(flist, i)); + VECTOR_FOR_EACH(al_string, flist, alstr_reset); VECTOR_DEINIT(flist); - - al_string_deinit(&fname); } - fnamelist = next; + pathlist = next; + } + + alstr_reset(&pname); + } + else if(ConfigValueExists(alstr_get_cstr(devname), NULL, "hrtf_tables")) + ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n"); + + if(usedefaults) + { + al_string ename = AL_STRING_INIT_STATIC(); + vector_al_string flist; + const ALubyte *rdata; + size_t rsize, i; + + flist = SearchDataFiles(".mhr", "openal/hrtf"); + for(i = 0;i < VECTOR_SIZE(flist);i++) + AddFileEntry(&list, VECTOR_ELEM(flist, i)); + VECTOR_FOR_EACH(al_string, flist, alstr_reset); + VECTOR_DEINIT(flist); + + rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize); + if(rdata != NULL && rsize > 0) + { + alstr_copy_cstr(&ename, "Built-In 44100hz"); + AddBuiltInEntry(&list, ename, IDR_DEFAULT_44100_MHR); + } + + rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize); + if(rdata != NULL && rsize > 0) + { + alstr_copy_cstr(&ename, "Built-In 48000hz"); + AddBuiltInEntry(&list, ename, IDR_DEFAULT_48000_MHR); + } + alstr_reset(&ename); + } + + if(VECTOR_SIZE(list) > 1 && ConfigValueStr(alstr_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf)) + { + const EnumeratedHrtf *iter; + /* Find the preferred HRTF and move it to the front of the list. */ +#define FIND_ENTRY(i) (alstr_cmp_cstr((i)->name, defaulthrtf) == 0) + VECTOR_FIND_IF(iter, const EnumeratedHrtf, list, FIND_ENTRY); +#undef FIND_ENTRY + if(iter == VECTOR_END(list)) + WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf); + else if(iter != VECTOR_BEGIN(list)) + { + EnumeratedHrtf entry = *iter; + memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0), + (iter-VECTOR_BEGIN(list))*sizeof(EnumeratedHrtf)); + VECTOR_ELEM(list,0) = entry; } } return list; } -void FreeHrtfList(vector_HrtfEntry *list) +void FreeHrtfList(vector_EnumeratedHrtf *list) { -#define CLEAR_ENTRY(i) do { \ - al_string_deinit(&(i)->name); \ - al_string_deinit(&(i)->filename); \ -} while(0) - VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY); +#define CLEAR_ENTRY(i) alstr_reset(&(i)->name) + VECTOR_FOR_EACH(EnumeratedHrtf, *list, CLEAR_ENTRY); VECTOR_DEINIT(*list); #undef CLEAR_ENTRY } +struct Hrtf *GetLoadedHrtf(struct HrtfEntry *entry) +{ + struct Hrtf *hrtf = NULL; + struct FileMapping fmap; + const ALubyte *rdata; + const char *name; + ALuint residx; + size_t rsize; + char ch; + + while(ATOMIC_FLAG_TEST_AND_SET(&LoadedHrtfLock, almemory_order_seq_cst)) + althrd_yield(); + + if(entry->handle) + { + hrtf = entry->handle; + Hrtf_IncRef(hrtf); + goto done; + } + + fmap.ptr = NULL; + fmap.len = 0; + if(sscanf(entry->filename, "!%u%c", &residx, &ch) == 2 && ch == '_') + { + name = strchr(entry->filename, ch)+1; + + TRACE("Loading %s...\n", name); + rdata = GetResource(residx, &rsize); + if(rdata == NULL || rsize == 0) + { + ERR("Could not get resource %u, %s\n", residx, name); + goto done; + } + } + else + { + name = entry->filename; + + TRACE("Loading %s...\n", entry->filename); + fmap = MapFileToMem(entry->filename); + if(fmap.ptr == NULL) + { + ERR("Could not open %s\n", entry->filename); + goto done; + } -ALuint GetHrtfSampleRate(const struct Hrtf *Hrtf) + rdata = fmap.ptr; + rsize = fmap.len; + } + + if(rsize < sizeof(magicMarker02)) + ERR("%s data is too short ("SZFMT" bytes)\n", name, rsize); + else if(memcmp(rdata, magicMarker02, sizeof(magicMarker02)) == 0) + { + TRACE("Detected data set format v2\n"); + hrtf = LoadHrtf02(rdata+sizeof(magicMarker02), + rsize-sizeof(magicMarker02), name + ); + } + else if(memcmp(rdata, magicMarker01, sizeof(magicMarker01)) == 0) + { + TRACE("Detected data set format v1\n"); + hrtf = LoadHrtf01(rdata+sizeof(magicMarker01), + rsize-sizeof(magicMarker01), name + ); + } + else if(memcmp(rdata, magicMarker00, sizeof(magicMarker00)) == 0) + { + TRACE("Detected data set format v0\n"); + hrtf = LoadHrtf00(rdata+sizeof(magicMarker00), + rsize-sizeof(magicMarker00), name + ); + } + else + ERR("Invalid header in %s: \"%.8s\"\n", name, (const char*)rdata); + if(fmap.ptr) + UnmapFileMem(&fmap); + + if(!hrtf) + { + ERR("Failed to load %s\n", name); + goto done; + } + entry->handle = hrtf; + Hrtf_IncRef(hrtf); + + TRACE("Loaded HRTF support for format: %s %uhz\n", + DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); + +done: + ATOMIC_FLAG_CLEAR(&LoadedHrtfLock, almemory_order_seq_cst); + return hrtf; +} + + +void Hrtf_IncRef(struct Hrtf *hrtf) { - return Hrtf->sampleRate; + uint ref = IncrementRef(&hrtf->ref); + TRACEREF("%p increasing refcount to %u\n", hrtf, ref); } -ALuint GetHrtfIrSize(const struct Hrtf *Hrtf) +void Hrtf_DecRef(struct Hrtf *hrtf) { - return Hrtf->irSize; + struct HrtfEntry *Hrtf; + uint ref = DecrementRef(&hrtf->ref); + TRACEREF("%p decreasing refcount to %u\n", hrtf, ref); + if(ref == 0) + { + while(ATOMIC_FLAG_TEST_AND_SET(&LoadedHrtfLock, almemory_order_seq_cst)) + althrd_yield(); + + Hrtf = LoadedHrtfs; + while(Hrtf != NULL) + { + /* Need to double-check that it's still unused, as another device + * could've reacquired this HRTF after its reference went to 0 and + * before the lock was taken. + */ + if(hrtf == Hrtf->handle && ReadRef(&hrtf->ref) == 0) + { + al_free(Hrtf->handle); + Hrtf->handle = NULL; + TRACE("Unloaded unused HRTF %s\n", Hrtf->filename); + } + Hrtf = Hrtf->next; + } + + ATOMIC_FLAG_CLEAR(&LoadedHrtfLock, almemory_order_seq_cst); + } } void FreeHrtfs(void) { - struct Hrtf *Hrtf = NULL; + struct HrtfEntry *Hrtf = LoadedHrtfs; + LoadedHrtfs = NULL; - while((Hrtf=LoadedHrtfs) != NULL) + while(Hrtf != NULL) { - LoadedHrtfs = Hrtf->next; - free((void*)Hrtf->azCount); - free((void*)Hrtf->evOffset); - free((void*)Hrtf->coeffs); - free((void*)Hrtf->delays); - al_string_deinit(&Hrtf->filename); - free(Hrtf); + struct HrtfEntry *next = Hrtf->next; + al_free(Hrtf->handle); + al_free(Hrtf); + Hrtf = next; } } |