diff options
Diffstat (limited to 'Alc/mixer/mixer_c.c')
-rw-r--r-- | Alc/mixer/mixer_c.c | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/Alc/mixer/mixer_c.c b/Alc/mixer/mixer_c.c new file mode 100644 index 00000000..14d7c669 --- /dev/null +++ b/Alc/mixer/mixer_c.c @@ -0,0 +1,169 @@ +#include "config.h" + +#include <assert.h> + +#include "alMain.h" +#include "alu.h" +#include "alSource.h" +#include "alAuxEffectSlot.h" +#include "defs.h" + + +static inline ALfloat do_point(const InterpState* UNUSED(state), const ALfloat *restrict vals, ALsizei UNUSED(frac)) +{ return vals[0]; } +static inline ALfloat do_lerp(const InterpState* UNUSED(state), const ALfloat *restrict vals, ALsizei frac) +{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } +static inline ALfloat do_cubic(const InterpState* UNUSED(state), const ALfloat *restrict vals, ALsizei frac) +{ return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); } +static inline ALfloat do_bsinc(const InterpState *state, const ALfloat *restrict vals, ALsizei frac) +{ + const ALfloat *fil, *scd, *phd, *spd; + ALsizei j_f, pi; + ALfloat pf, r; + + ASSUME(state->bsinc.m > 0); + + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + pi = frac >> FRAC_PHASE_BITDIFF; + pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF)); +#undef FRAC_PHASE_BITDIFF + + fil = ASSUME_ALIGNED(state->bsinc.filter + state->bsinc.m*pi*4, 16); + scd = ASSUME_ALIGNED(fil + state->bsinc.m, 16); + phd = ASSUME_ALIGNED(scd + state->bsinc.m, 16); + spd = ASSUME_ALIGNED(phd + state->bsinc.m, 16); + + // Apply the scale and phase interpolated filter. + r = 0.0f; + for(j_f = 0;j_f < state->bsinc.m;j_f++) + r += (fil[j_f] + state->bsinc.sf*scd[j_f] + pf*(phd[j_f] + state->bsinc.sf*spd[j_f])) * vals[j_f]; + return r; +} + +const ALfloat *Resample_copy_C(const InterpState* UNUSED(state), + const ALfloat *restrict src, ALsizei UNUSED(frac), ALint UNUSED(increment), + ALfloat *restrict dst, ALsizei numsamples) +{ +#if defined(HAVE_SSE) || defined(HAVE_NEON) + /* Avoid copying the source data if it's aligned like the destination. */ + if((((intptr_t)src)&15) == (((intptr_t)dst)&15)) + return src; +#endif + memcpy(dst, src, numsamples*sizeof(ALfloat)); + return dst; +} + +#define DECL_TEMPLATE(Tag, Sampler, O) \ +const ALfloat *Resample_##Tag##_C(const InterpState *state, \ + const ALfloat *restrict src, ALsizei frac, ALint increment, \ + ALfloat *restrict dst, ALsizei numsamples) \ +{ \ + const InterpState istate = *state; \ + ALsizei i; \ + \ + ASSUME(numsamples > 0); \ + \ + src -= O; \ + for(i = 0;i < numsamples;i++) \ + { \ + dst[i] = Sampler(&istate, src, frac); \ + \ + frac += increment; \ + src += frac>>FRACTIONBITS; \ + frac &= FRACTIONMASK; \ + } \ + return dst; \ +} + +DECL_TEMPLATE(point, do_point, 0) +DECL_TEMPLATE(lerp, do_lerp, 0) +DECL_TEMPLATE(cubic, do_cubic, 1) +DECL_TEMPLATE(bsinc, do_bsinc, istate.bsinc.l) + +#undef DECL_TEMPLATE + + +static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2], + const ALsizei IrSize, + const ALfloat (*restrict Coeffs)[2], + ALfloat left, ALfloat right) +{ + ALsizei c; + for(c = 0;c < IrSize;c++) + { + const ALsizei off = (Offset+c)&HRIR_MASK; + Values[off][0] += Coeffs[c][0] * left; + Values[off][1] += Coeffs[c][1] * right; + } +} + +#define MixHrtf MixHrtf_C +#define MixHrtfBlend MixHrtfBlend_C +#define MixDirectHrtf MixDirectHrtf_C +#include "hrtf_inc.c" + + +void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE], + ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos, + ALsizei BufferSize) +{ + const ALfloat delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f; + ALsizei c; + + ASSUME(OutChans > 0); + ASSUME(BufferSize > 0); + + for(c = 0;c < OutChans;c++) + { + ALsizei pos = 0; + ALfloat gain = CurrentGains[c]; + const ALfloat diff = TargetGains[c] - gain; + + if(fabsf(diff) > FLT_EPSILON) + { + ALsizei minsize = mini(BufferSize, Counter); + const ALfloat step = diff * delta; + ALfloat step_count = 0.0f; + for(;pos < minsize;pos++) + { + OutBuffer[c][OutPos+pos] += data[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = TargetGains[c]; + else + gain += step*step_count; + CurrentGains[c] = gain; + } + + if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + for(;pos < BufferSize;pos++) + OutBuffer[c][OutPos+pos] += data[pos]*gain; + } +} + +/* Basically the inverse of the above. Rather than one input going to multiple + * outputs (each with its own gain), it's multiple inputs (each with its own + * gain) going to one output. This applies one row (vs one column) of a matrix + * transform. And as the matrices are more or less static once set up, no + * stepping is necessary. + */ +void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize) +{ + ALsizei c, i; + + ASSUME(InChans > 0); + ASSUME(BufferSize > 0); + + for(c = 0;c < InChans;c++) + { + const ALfloat gain = Gains[c]; + if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + for(i = 0;i < BufferSize;i++) + OutBuffer[i] += data[c][InPos+i] * gain; + } +} |