aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects
diff options
context:
space:
mode:
Diffstat (limited to 'alc/effects')
-rw-r--r--alc/effects/reverb.cpp83
1 files changed, 46 insertions, 37 deletions
diff --git a/alc/effects/reverb.cpp b/alc/effects/reverb.cpp
index ac599e41..047dca6c 100644
--- a/alc/effects/reverb.cpp
+++ b/alc/effects/reverb.cpp
@@ -1587,16 +1587,51 @@ void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo,
/* First, calculate the modulated delays for the late feedback. */
mLate.Mod.calcDelays(todo);
- /* Next, load decorrelated samples from the main and feedback delay
- * lines. Filter the signal to apply its frequency-dependent decay.
+ /* Now load samples from the feedback delay lines. Filter the signal to
+ * apply its frequency-dependent decay.
*/
+ for(size_t j{0u};j < NUM_LINES;++j)
+ {
+ size_t late_feedb_tap{offset - mLate.Offset[j]};
+ const float midGain{mLate.T60[j].MidGain};
+
+ for(size_t i{0u};i < todo;++i)
+ {
+ /* Calculate the read offset and offset between it and the next
+ * sample.
+ */
+ const float fdelay{mLate.Mod.ModDelays[i]};
+ const size_t idelay{float2uint(fdelay * float{gCubicTable.sTableSteps})};
+ const size_t delay{late_feedb_tap - (idelay>>gCubicTable.sTableBits)};
+ const size_t delayoffset{idelay & gCubicTable.sTableMask};
+ ++late_feedb_tap;
+
+ /* Get the samples around by the delayed offset. */
+ const float out0{late_delay.Line[(delay ) & late_delay.Mask][j]};
+ const float out1{late_delay.Line[(delay-1) & late_delay.Mask][j]};
+ const float out2{late_delay.Line[(delay-2) & late_delay.Mask][j]};
+ const float out3{late_delay.Line[(delay-3) & late_delay.Mask][j]};
+
+ /* The output is obtained by interpolating the four samples
+ * that were acquired above, and combined with the main delay
+ * tap.
+ */
+ const float out{out0*gCubicTable.getCoeff0(delayoffset)
+ + out1*gCubicTable.getCoeff1(delayoffset)
+ + out2*gCubicTable.getCoeff2(delayoffset)
+ + out3*gCubicTable.getCoeff3(delayoffset)};
+ tempSamples[j][i] = out * midGain;
+ }
+
+ mLate.T60[j].process({tempSamples[j].data(), todo});
+ }
+
+ /* Next load decorrelated samples from the main delay lines. */
const float fadeStep{1.0f / static_cast<float>(todo)};
- for(size_t j{0u};j < NUM_LINES;j++)
+ for(size_t j{0u};j < NUM_LINES;++j)
{
size_t late_delay_tap0{offset - mLateDelayTap[j][0]};
size_t late_delay_tap1{offset - mLateDelayTap[j][1]};
- size_t late_feedb_tap{offset - mLate.Offset[j]};
- const float midGain{mLate.T60[j].MidGain};
const float densityGain{mLate.DensityGain};
const float densityStep{late_delay_tap0 != late_delay_tap1 ?
densityGain*fadeStep : 0.0f};
@@ -1608,48 +1643,22 @@ void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo,
late_delay_tap1 &= in_delay.Mask;
size_t td{minz(todo-i, in_delay.Mask+1 - maxz(late_delay_tap0, late_delay_tap1))};
do {
- /* Calculate the read offset and offset between it and the
- * next sample.
- */
- const float fdelay{mLate.Mod.ModDelays[i]};
- const size_t idelay{float2uint(fdelay * float{gCubicTable.sTableSteps})};
- const size_t delay{late_feedb_tap - (idelay>>gCubicTable.sTableBits)};
- const size_t delayoffset{idelay & gCubicTable.sTableMask};
- ++late_feedb_tap;
-
- /* Get the samples around by the delayed offset. */
- const float out0{late_delay.Line[(delay ) & late_delay.Mask][j]};
- const float out1{late_delay.Line[(delay-1) & late_delay.Mask][j]};
- const float out2{late_delay.Line[(delay-2) & late_delay.Mask][j]};
- const float out3{late_delay.Line[(delay-3) & late_delay.Mask][j]};
-
- /* The output is obtained by interpolating the four samples
- * that were acquired above, and combined with the main
- * delay tap.
- */
- const float out{out0*gCubicTable.getCoeff0(delayoffset)
- + out1*gCubicTable.getCoeff1(delayoffset)
- + out2*gCubicTable.getCoeff2(delayoffset)
- + out3*gCubicTable.getCoeff3(delayoffset)};
const float fade0{densityGain - densityStep*fadeCount};
const float fade1{densityStep*fadeCount};
fadeCount += 1.0f;
- tempSamples[j][i] = (out +
- in_delay.Line[late_delay_tap0++][j]*fade0 +
- in_delay.Line[late_delay_tap1++][j]*fade1) * midGain;
+ tempSamples[j][i] += in_delay.Line[late_delay_tap0++][j]*fade0 +
+ in_delay.Line[late_delay_tap1++][j]*fade1;
++i;
} while(--td);
}
mLateDelayTap[j][0] = mLateDelayTap[j][1];
-
- mLate.T60[j].process({tempSamples[j].data(), todo});
}
/* Apply a vector all-pass to improve micro-surface diffusion, and
* write out the results for mixing.
*/
mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo);
- for(size_t j{0u};j < NUM_LINES;j++)
+ for(size_t j{0u};j < NUM_LINES;++j)
std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base);
/* Finally, scatter and bounce the results to refeed the feedback buffer. */
@@ -1674,7 +1683,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu
/* Convert B-Format to A-Format for processing. */
const size_t numInput{minz(samplesIn.size(), NUM_LINES)};
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
- for(size_t c{0u};c < NUM_LINES;c++)
+ for(size_t c{0u};c < NUM_LINES;++c)
{
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
for(size_t i{0};i < numInput;++i)
@@ -1715,7 +1724,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
const float fadeStep{1.0f / static_cast<float>(samplesToDo)};
- for(size_t c{0u};c < NUM_LINES;c++)
+ for(size_t c{0u};c < NUM_LINES;++c)
{
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
for(size_t i{0};i < numInput;++i)
@@ -1739,7 +1748,7 @@ void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBu
filter.process(tmpspan, tmpspan.data());
pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
}
- for(size_t c{0u};c < NUM_LINES;c++)
+ for(size_t c{0u};c < NUM_LINES;++c)
{
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
for(size_t i{0};i < numInput;++i)