diff options
Diffstat (limited to 'core/mastering.cpp')
-rw-r--r-- | core/mastering.cpp | 237 |
1 files changed, 110 insertions, 127 deletions
diff --git a/core/mastering.cpp b/core/mastering.cpp index 4445719b..9eaabc35 100644 --- a/core/mastering.cpp +++ b/core/mastering.cpp @@ -21,8 +21,8 @@ static_assert((BufferLineSize & (BufferLineSize-1)) == 0, "BufferLineSize is not a power of 2"); struct SlidingHold { - alignas(16) float mValues[BufferLineSize]; - uint mExpiries[BufferLineSize]; + alignas(16) FloatBufferLine mValues; + std::array<uint,BufferLineSize> mExpiries; uint mLowerIndex; uint mUpperIndex; uint mLength; @@ -44,8 +44,8 @@ float UpdateSlidingHold(SlidingHold *Hold, const uint i, const float in) { static constexpr uint mask{BufferLineSize - 1}; const uint length{Hold->mLength}; - float (&values)[BufferLineSize] = Hold->mValues; - uint (&expiries)[BufferLineSize] = Hold->mExpiries; + const al::span values{Hold->mValues}; + const al::span expiries{Hold->mExpiries}; uint lowerIndex{Hold->mLowerIndex}; uint upperIndex{Hold->mUpperIndex}; @@ -60,14 +60,16 @@ float UpdateSlidingHold(SlidingHold *Hold, const uint i, const float in) } else { - do { + auto findLowerIndex = [&lowerIndex,in,values]() noexcept -> bool + { do { if(!(in >= values[lowerIndex])) - goto found_place; + return true; } while(lowerIndex--); + return false; + }; + while(!findLowerIndex()) lowerIndex = mask; - } while(true); - found_place: lowerIndex = (lowerIndex + 1) & mask; values[lowerIndex] = in; @@ -82,38 +84,38 @@ float UpdateSlidingHold(SlidingHold *Hold, const uint i, const float in) void ShiftSlidingHold(SlidingHold *Hold, const uint n) { - auto exp_begin = std::begin(Hold->mExpiries) + Hold->mUpperIndex; - auto exp_last = std::begin(Hold->mExpiries) + Hold->mLowerIndex; - if(exp_last-exp_begin < 0) + auto exp_upper = Hold->mExpiries.begin() + Hold->mUpperIndex; + if(Hold->mLowerIndex < Hold->mUpperIndex) { - std::transform(exp_begin, std::end(Hold->mExpiries), exp_begin, - [n](uint e){ return e - n; }); - exp_begin = std::begin(Hold->mExpiries); + std::transform(exp_upper, Hold->mExpiries.end(), exp_upper, + [n](const uint e) noexcept { return e - n; }); + exp_upper = Hold->mExpiries.begin(); } - std::transform(exp_begin, exp_last+1, exp_begin, [n](uint e){ return e - n; }); + const auto exp_lower = Hold->mExpiries.begin() + Hold->mLowerIndex; + std::transform(exp_upper, exp_lower+1, exp_upper, + [n](const uint e) noexcept { return e - n; }); } +} // namespace /* Multichannel compression is linked via the absolute maximum of all * channels. */ -void LinkChannels(Compressor *Comp, const uint SamplesToDo, const FloatBufferLine *OutBuffer) +void Compressor::linkChannels(const uint SamplesToDo, const FloatBufferLine *OutBuffer) { - const size_t numChans{Comp->mNumChans}; - ASSUME(SamplesToDo > 0); - ASSUME(numChans > 0); - auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead; + const auto side_begin = mSideChain.begin() + mLookAhead; std::fill(side_begin, side_begin+SamplesToDo, 0.0f); auto fill_max = [SamplesToDo,side_begin](const FloatBufferLine &input) -> void { const float *RESTRICT buffer{al::assume_aligned<16>(input.data())}; - auto max_abs = std::bind(maxf, _1, std::bind(static_cast<float(&)(float)>(std::fabs), _2)); + auto max_abs = [](const float s0, const float s1) noexcept -> float + { return std::max(s0, std::fabs(s1)); }; std::transform(side_begin, side_begin+SamplesToDo, buffer, side_begin, max_abs); }; - std::for_each(OutBuffer, OutBuffer+numChans, fill_max); + std::for_each(OutBuffer, OutBuffer+mNumChans, fill_max); } /* This calculates the squared crest factor of the control signal for the @@ -121,59 +123,59 @@ void LinkChannels(Compressor *Comp, const uint SamplesToDo, const FloatBufferLin * it uses an instantaneous squared peak detector and a squared RMS detector * both with 200ms release times. */ -void CrestDetector(Compressor *Comp, const uint SamplesToDo) +void Compressor::crestDetector(const uint SamplesToDo) { - const float a_crest{Comp->mCrestCoeff}; - float y2_peak{Comp->mLastPeakSq}; - float y2_rms{Comp->mLastRmsSq}; + const float a_crest{mCrestCoeff}; + float y2_peak{mLastPeakSq}; + float y2_rms{mLastRmsSq}; ASSUME(SamplesToDo > 0); auto calc_crest = [&y2_rms,&y2_peak,a_crest](const float x_abs) noexcept -> float { - const float x2{clampf(x_abs * x_abs, 0.000001f, 1000000.0f)}; + const float x2{clampf(x_abs*x_abs, 0.000001f, 1000000.0f)}; - y2_peak = maxf(x2, lerpf(x2, y2_peak, a_crest)); + y2_peak = std::max(x2, lerpf(x2, y2_peak, a_crest)); y2_rms = lerpf(x2, y2_rms, a_crest); return y2_peak / y2_rms; }; - auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead; - std::transform(side_begin, side_begin+SamplesToDo, std::begin(Comp->mCrestFactor), calc_crest); + const auto side_begin = mSideChain.begin() + mLookAhead; + std::transform(side_begin, side_begin+SamplesToDo, mCrestFactor.begin(), calc_crest); - Comp->mLastPeakSq = y2_peak; - Comp->mLastRmsSq = y2_rms; + mLastPeakSq = y2_peak; + mLastRmsSq = y2_rms; } /* The side-chain starts with a simple peak detector (based on the absolute * value of the incoming signal) and performs most of its operations in the * log domain. */ -void PeakDetector(Compressor *Comp, const uint SamplesToDo) +void Compressor::peakDetector(const uint SamplesToDo) { ASSUME(SamplesToDo > 0); - /* Clamp the minimum amplitude to near-zero and convert to logarithm. */ - auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead; + /* Clamp the minimum amplitude to near-zero and convert to logarithmic. */ + const auto side_begin = mSideChain.begin() + mLookAhead; std::transform(side_begin, side_begin+SamplesToDo, side_begin, - [](float s) { return std::log(maxf(0.000001f, s)); }); + [](float s) { return std::log(std::max(0.000001f, s)); }); } /* An optional hold can be used to extend the peak detector so it can more * solidly detect fast transients. This is best used when operating as a * limiter. */ -void PeakHoldDetector(Compressor *Comp, const uint SamplesToDo) +void Compressor::peakHoldDetector(const uint SamplesToDo) { ASSUME(SamplesToDo > 0); - SlidingHold *hold{Comp->mHold}; + SlidingHold *hold{mHold.get()}; uint i{0}; auto detect_peak = [&i,hold](const float x_abs) -> float { - const float x_G{std::log(maxf(0.000001f, x_abs))}; + const float x_G{std::log(std::max(0.000001f, x_abs))}; return UpdateSlidingHold(hold, i++, x_G); }; - auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead; + auto side_begin = mSideChain.begin() + mLookAhead; std::transform(side_begin, side_begin+SamplesToDo, side_begin, detect_peak); ShiftSlidingHold(hold, SamplesToDo); @@ -184,46 +186,46 @@ void PeakHoldDetector(Compressor *Comp, const uint SamplesToDo) * to knee width, attack/release times, make-up/post gain, and clipping * reduction. */ -void GainCompressor(Compressor *Comp, const uint SamplesToDo) +void Compressor::gainCompressor(const uint SamplesToDo) { - const bool autoKnee{Comp->mAuto.Knee}; - const bool autoAttack{Comp->mAuto.Attack}; - const bool autoRelease{Comp->mAuto.Release}; - const bool autoPostGain{Comp->mAuto.PostGain}; - const bool autoDeclip{Comp->mAuto.Declip}; - const uint lookAhead{Comp->mLookAhead}; - const float threshold{Comp->mThreshold}; - const float slope{Comp->mSlope}; - const float attack{Comp->mAttack}; - const float release{Comp->mRelease}; - const float c_est{Comp->mGainEstimate}; - const float a_adp{Comp->mAdaptCoeff}; - const float *crestFactor{Comp->mCrestFactor}; - float postGain{Comp->mPostGain}; - float knee{Comp->mKnee}; + const bool autoKnee{mAuto.Knee}; + const bool autoAttack{mAuto.Attack}; + const bool autoRelease{mAuto.Release}; + const bool autoPostGain{mAuto.PostGain}; + const bool autoDeclip{mAuto.Declip}; + const float threshold{mThreshold}; + const float slope{mSlope}; + const float attack{mAttack}; + const float release{mRelease}; + const float c_est{mGainEstimate}; + const float a_adp{mAdaptCoeff}; + auto lookAhead = mSideChain.cbegin() + mLookAhead; + auto crestFactor = mCrestFactor.cbegin(); + float postGain{mPostGain}; + float knee{mKnee}; float t_att{attack}; float t_rel{release - attack}; float a_att{std::exp(-1.0f / t_att)}; float a_rel{std::exp(-1.0f / t_rel)}; - float y_1{Comp->mLastRelease}; - float y_L{Comp->mLastAttack}; - float c_dev{Comp->mLastGainDev}; + float y_1{mLastRelease}; + float y_L{mLastAttack}; + float c_dev{mLastGainDev}; ASSUME(SamplesToDo > 0); - for(float &sideChain : al::span<float>{Comp->mSideChain, SamplesToDo}) + auto process = [&](const float input) -> float { if(autoKnee) - knee = maxf(0.0f, 2.5f * (c_dev + c_est)); + knee = std::max(0.0f, 2.5f * (c_dev + c_est)); const float knee_h{0.5f * knee}; /* This is the gain computer. It applies a static compression curve * to the control signal. */ - const float x_over{std::addressof(sideChain)[lookAhead] - threshold}; + const float x_over{*(lookAhead++) - threshold}; const float y_G{ (x_over <= -knee_h) ? 0.0f : - (std::fabs(x_over) < knee_h) ? (x_over + knee_h) * (x_over + knee_h) / (2.0f * knee) : + (std::fabs(x_over) < knee_h) ? (x_over+knee_h) * (x_over+knee_h) / (2.0f * knee) : x_over}; const float y2_crest{*(crestFactor++)}; @@ -243,7 +245,7 @@ void GainCompressor(Compressor *Comp, const uint SamplesToDo) * above to compensate for the chained operating mode. */ const float x_L{-slope * y_G}; - y_1 = maxf(x_L, lerpf(x_L, y_1, a_rel)); + y_1 = std::max(x_L, lerpf(x_L, y_1, a_rel)); y_L = lerpf(y_1, y_L, a_att); /* Knee width and make-up gain automation make use of a smoothed @@ -262,17 +264,19 @@ void GainCompressor(Compressor *Comp, const uint SamplesToDo) * same output level. */ if(autoDeclip) - c_dev = maxf(c_dev, sideChain - y_L - threshold - c_est); + c_dev = std::max(c_dev, input - y_L - threshold - c_est); postGain = -(c_dev + c_est); } - sideChain = std::exp(postGain - y_L); - } + return std::exp(postGain - y_L); + }; + auto sideChain = al::span{mSideChain}.first(SamplesToDo); + std::transform(sideChain.begin(), sideChain.end(), sideChain.begin(), process); - Comp->mLastRelease = y_1; - Comp->mLastAttack = y_L; - Comp->mLastGainDev = c_dev; + mLastRelease = y_1; + mLastAttack = y_L; + mLastGainDev = c_dev; } /* Combined with the hold time, a look-ahead delay can improve handling of @@ -280,10 +284,10 @@ void GainCompressor(Compressor *Comp, const uint SamplesToDo) * reaching the offending impulse. This is best used when operating as a * limiter. */ -void SignalDelay(Compressor *Comp, const uint SamplesToDo, FloatBufferLine *OutBuffer) +void Compressor::signalDelay(const uint SamplesToDo, FloatBufferLine *OutBuffer) { - const size_t numChans{Comp->mNumChans}; - const uint lookAhead{Comp->mLookAhead}; + const size_t numChans{mNumChans}; + const uint lookAhead{mLookAhead}; ASSUME(SamplesToDo > 0); ASSUME(numChans > 0); @@ -292,7 +296,7 @@ void SignalDelay(Compressor *Comp, const uint SamplesToDo, FloatBufferLine *OutB for(size_t c{0};c < numChans;c++) { float *inout{al::assume_aligned<16>(OutBuffer[c].data())}; - float *delaybuf{al::assume_aligned<16>(Comp->mDelay[c].data())}; + float *delaybuf{al::assume_aligned<16>(mDelay[c].data())}; auto inout_end = inout + SamplesToDo; if(SamplesToDo >= lookAhead) LIKELY @@ -308,8 +312,6 @@ void SignalDelay(Compressor *Comp, const uint SamplesToDo, FloatBufferLine *OutB } } -} // namespace - std::unique_ptr<Compressor> Compressor::Create(const size_t NumChans, const float SampleRate, const bool AutoKnee, const bool AutoAttack, const bool AutoRelease, const bool AutoPostGain, @@ -317,24 +319,12 @@ std::unique_ptr<Compressor> Compressor::Create(const size_t NumChans, const floa const float PostGainDb, const float ThresholdDb, const float Ratio, const float KneeDb, const float AttackTime, const float ReleaseTime) { - const auto lookAhead = static_cast<uint>( - clampf(std::round(LookAheadTime*SampleRate), 0.0f, BufferLineSize-1)); - const auto hold = static_cast<uint>( - clampf(std::round(HoldTime*SampleRate), 0.0f, BufferLineSize-1)); + const auto lookAhead = static_cast<uint>(clampf(std::round(LookAheadTime*SampleRate), 0.0f, + BufferLineSize-1)); + const auto hold = static_cast<uint>(clampf(std::round(HoldTime*SampleRate), 0.0f, + BufferLineSize-1)); - size_t size{sizeof(Compressor)}; - if(lookAhead > 0) - { - size += sizeof(*Compressor::mDelay) * NumChans; - /* The sliding hold implementation doesn't handle a length of 1. A 1- - * sample hold is useless anyway, it would only ever give back what was - * just given to it. - */ - if(hold > 1) - size += sizeof(*Compressor::mHold); - } - - auto Comp = CompressorPtr{al::construct_at(static_cast<Compressor*>(al_calloc(16, size)))}; + auto Comp = CompressorPtr{new Compressor{}}; Comp->mNumChans = NumChans; Comp->mAuto.Knee = AutoKnee; Comp->mAuto.Attack = AutoAttack; @@ -343,12 +333,12 @@ std::unique_ptr<Compressor> Compressor::Create(const size_t NumChans, const floa Comp->mAuto.Declip = AutoPostGain && AutoDeclip; Comp->mLookAhead = lookAhead; Comp->mPreGain = std::pow(10.0f, PreGainDb / 20.0f); - Comp->mPostGain = PostGainDb * std::log(10.0f) / 20.0f; - Comp->mThreshold = ThresholdDb * std::log(10.0f) / 20.0f; - Comp->mSlope = 1.0f / maxf(1.0f, Ratio) - 1.0f; - Comp->mKnee = maxf(0.0f, KneeDb * std::log(10.0f) / 20.0f); - Comp->mAttack = maxf(1.0f, AttackTime * SampleRate); - Comp->mRelease = maxf(1.0f, ReleaseTime * SampleRate); + Comp->mPostGain = std::log(10.0f)/20.0f * PostGainDb; + Comp->mThreshold = std::log(10.0f)/20.0f * ThresholdDb; + Comp->mSlope = 1.0f / std::max(1.0f, Ratio) - 1.0f; + Comp->mKnee = std::max(0.0f, std::log(10.0f)/20.0f * KneeDb); + Comp->mAttack = std::max(1.0f, AttackTime * SampleRate); + Comp->mRelease = std::max(1.0f, ReleaseTime * SampleRate); /* Knee width automation actually treats the compressor as a limiter. By * varying the knee width, it can effectively be seen as applying @@ -359,17 +349,18 @@ std::unique_ptr<Compressor> Compressor::Create(const size_t NumChans, const floa if(lookAhead > 0) { + /* The sliding hold implementation doesn't handle a length of 1. A 1- + * sample hold is useless anyway, it would only ever give back what was + * just given to it. + */ if(hold > 1) { - Comp->mHold = al::construct_at(reinterpret_cast<SlidingHold*>(Comp.get() + 1)); + Comp->mHold = std::make_unique<SlidingHold>(); Comp->mHold->mValues[0] = -std::numeric_limits<float>::infinity(); Comp->mHold->mExpiries[0] = hold; Comp->mHold->mLength = hold; - Comp->mDelay = reinterpret_cast<FloatBufferLine*>(Comp->mHold + 1); } - else - Comp->mDelay = reinterpret_cast<FloatBufferLine*>(Comp.get() + 1); - std::uninitialized_fill_n(Comp->mDelay, NumChans, FloatBufferLine{}); + Comp->mDelay.resize(NumChans, FloatBufferLine{}); } Comp->mCrestCoeff = std::exp(-1.0f / (0.200f * SampleRate)); // 200ms @@ -379,15 +370,7 @@ std::unique_ptr<Compressor> Compressor::Create(const size_t NumChans, const floa return Comp; } -Compressor::~Compressor() -{ - if(mHold) - std::destroy_at(mHold); - mHold = nullptr; - if(mDelay) - std::destroy_n(mDelay, mNumChans); - mDelay = nullptr; -} +Compressor::~Compressor() = default; void Compressor::process(const uint SamplesToDo, FloatBufferLine *OutBuffer) @@ -404,36 +387,36 @@ void Compressor::process(const uint SamplesToDo, FloatBufferLine *OutBuffer) { float *buffer{al::assume_aligned<16>(input.data())}; std::transform(buffer, buffer+SamplesToDo, buffer, - [preGain](float s) { return s * preGain; }); + [preGain](const float s) noexcept { return s * preGain; }); }; std::for_each(OutBuffer, OutBuffer+numChans, apply_gain); } - LinkChannels(this, SamplesToDo, OutBuffer); + linkChannels(SamplesToDo, OutBuffer); if(mAuto.Attack || mAuto.Release) - CrestDetector(this, SamplesToDo); + crestDetector(SamplesToDo); if(mHold) - PeakHoldDetector(this, SamplesToDo); + peakHoldDetector(SamplesToDo); else - PeakDetector(this, SamplesToDo); + peakDetector(SamplesToDo); - GainCompressor(this, SamplesToDo); + gainCompressor(SamplesToDo); - if(mDelay) - SignalDelay(this, SamplesToDo, OutBuffer); + if(!mDelay.empty()) + signalDelay(SamplesToDo, OutBuffer); - const float (&sideChain)[BufferLineSize*2] = mSideChain; - auto apply_comp = [SamplesToDo,&sideChain](FloatBufferLine &input) noexcept -> void + const auto sideChain = al::span{mSideChain}; + auto apply_comp = [SamplesToDo,sideChain](FloatBufferLine &input) noexcept -> void { float *buffer{al::assume_aligned<16>(input.data())}; - const float *gains{al::assume_aligned<16>(&sideChain[0])}; + const float *gains{al::assume_aligned<16>(sideChain.data())}; std::transform(gains, gains+SamplesToDo, buffer, buffer, - [](float g, float s) { return g * s; }); + [](const float g, const float s) noexcept { return g * s; }); }; std::for_each(OutBuffer, OutBuffer+numChans, apply_comp); - auto side_begin = std::begin(mSideChain) + SamplesToDo; - std::copy(side_begin, side_begin+mLookAhead, std::begin(mSideChain)); + auto side_begin = mSideChain.begin() + SamplesToDo; + std::copy(side_begin, side_begin+mLookAhead, mSideChain.begin()); } |