diff options
Diffstat (limited to 'core/mixer/hrtfbase.h')
-rw-r--r-- | core/mixer/hrtfbase.h | 159 |
1 files changed, 159 insertions, 0 deletions
diff --git a/core/mixer/hrtfbase.h b/core/mixer/hrtfbase.h new file mode 100644 index 00000000..8031fe3d --- /dev/null +++ b/core/mixer/hrtfbase.h @@ -0,0 +1,159 @@ +#ifndef CORE_MIXER_HRTFBASE_H +#define CORE_MIXER_HRTFBASE_H + +#include <algorithm> +#include <cmath> + +#include "almalloc.h" +#include "hrtfdefs.h" +#include "opthelpers.h" + + +using uint = unsigned int; + +using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const uint_fast32_t irSize, + const HrirArray &Coeffs, const float left, const float right); + +template<ApplyCoeffsT ApplyCoeffs> +inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ + ASSUME(BufferSize > 0); + + const HrirArray &Coeffs = *hrtfparams->Coeffs; + const float gainstep{hrtfparams->GainStep}; + const float gain{hrtfparams->Gain}; + + size_t ldelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[0]}; + size_t rdelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[1]}; + float stepcount{0.0f}; + for(size_t i{0u};i < BufferSize;++i) + { + const float g{gain + gainstep*stepcount}; + const float left{InSamples[ldelay++] * g}; + const float right{InSamples[rdelay++] * g}; + ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right); + + stepcount += 1.0f; + } +} + +template<ApplyCoeffsT ApplyCoeffs> +inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples, + const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, + const size_t BufferSize) +{ + ASSUME(BufferSize > 0); + + const auto &OldCoeffs = oldparams->Coeffs; + const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)}; + const auto &NewCoeffs = *newparams->Coeffs; + const float newGainStep{newparams->GainStep}; + + if LIKELY(oldparams->Gain > GainSilenceThreshold) + { + size_t ldelay{HRTF_HISTORY_LENGTH - oldparams->Delay[0]}; + size_t rdelay{HRTF_HISTORY_LENGTH - oldparams->Delay[1]}; + auto stepcount = static_cast<float>(BufferSize); + for(size_t i{0u};i < BufferSize;++i) + { + const float g{oldGainStep*stepcount}; + const float left{InSamples[ldelay++] * g}; + const float right{InSamples[rdelay++] * g}; + ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right); + + stepcount -= 1.0f; + } + } + + if LIKELY(newGainStep*static_cast<float>(BufferSize) > GainSilenceThreshold) + { + size_t ldelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[0]}; + size_t rdelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[1]}; + float stepcount{1.0f}; + for(size_t i{1u};i < BufferSize;++i) + { + const float g{newGainStep*stepcount}; + const float left{InSamples[ldelay++] * g}; + const float right{InSamples[rdelay++] * g}; + ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right); + + stepcount += 1.0f; + } + } +} + +template<ApplyCoeffsT ApplyCoeffs> +inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + ASSUME(BufferSize > 0); + + /* Add the existing signal directly to the accumulation buffer, unfiltered, + * and with a delay to align with the input delay. + */ + for(size_t i{0};i < BufferSize;++i) + { + AccumSamples[HRTF_DIRECT_DELAY+i][0] += LeftOut[i]; + AccumSamples[HRTF_DIRECT_DELAY+i][1] += RightOut[i]; + } + + for(const FloatBufferLine &input : InSamples) + { + /* For dual-band processing, the signal needs extra scaling applied to + * the high frequency response. The band-splitter alone creates a + * frequency-dependent phase shift, which is not ideal. To counteract + * it, combine it with a backwards phase shift. + */ + + /* Load the input signal backwards, into a temp buffer with delay + * padding. The delay serves to reduce the error caused by the IIR + * filter's phase shift on a partial input. + */ + al::span<float> tempbuf{al::assume_aligned<16>(TempBuf), HRTF_DIRECT_DELAY+BufferSize}; + auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin()); + std::copy(ChanState->mDelay.cbegin(), ChanState->mDelay.cend(), tmpiter); + + /* Save the unfiltered newest input samples for next time. */ + std::copy_n(tempbuf.begin(), ChanState->mDelay.size(), ChanState->mDelay.begin()); + + /* Apply the all-pass on the reversed signal and reverse the resulting + * sample array. This produces the forward response with a backwards + * phase shift (+n degrees becomes -n degrees). + */ + ChanState->mSplitter.applyAllpass(tempbuf); + tempbuf = tempbuf.subspan<HRTF_DIRECT_DELAY>(); + std::reverse(tempbuf.begin(), tempbuf.end()); + + /* Now apply the HF scale with the band-splitter. This applies the + * forward phase shift, which cancels out with the backwards phase + * shift to get the original phase on the scaled signal. + */ + ChanState->mSplitter.processHfScale(tempbuf, ChanState->mHfScale); + + /* Now apply the HRIR coefficients to this channel. */ + const auto &Coeffs = ChanState->mCoeffs; + for(size_t i{0u};i < BufferSize;++i) + { + const float insample{tempbuf[i]}; + ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample); + } + + ++ChanState; + } + + for(size_t i{0u};i < BufferSize;++i) + LeftOut[i] = AccumSamples[i][0]; + for(size_t i{0u};i < BufferSize;++i) + RightOut[i] = AccumSamples[i][1]; + + /* Copy the new in-progress accumulation values to the front and clear the + * following samples for the next mix. + */ + auto accum_iter = std::copy_n(AccumSamples+BufferSize, HRIR_LENGTH+HRTF_DIRECT_DELAY, + AccumSamples); + std::fill_n(accum_iter, BufferSize, float2{}); +} + +#endif /* CORE_MIXER_HRTFBASE_H */ |