aboutsummaryrefslogtreecommitdiffstats
path: root/core/mixer/hrtfbase.h
diff options
context:
space:
mode:
Diffstat (limited to 'core/mixer/hrtfbase.h')
-rw-r--r--core/mixer/hrtfbase.h159
1 files changed, 159 insertions, 0 deletions
diff --git a/core/mixer/hrtfbase.h b/core/mixer/hrtfbase.h
new file mode 100644
index 00000000..8031fe3d
--- /dev/null
+++ b/core/mixer/hrtfbase.h
@@ -0,0 +1,159 @@
+#ifndef CORE_MIXER_HRTFBASE_H
+#define CORE_MIXER_HRTFBASE_H
+
+#include <algorithm>
+#include <cmath>
+
+#include "almalloc.h"
+#include "hrtfdefs.h"
+#include "opthelpers.h"
+
+
+using uint = unsigned int;
+
+using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const uint_fast32_t irSize,
+ const HrirArray &Coeffs, const float left, const float right);
+
+template<ApplyCoeffsT ApplyCoeffs>
+inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ const HrirArray &Coeffs = *hrtfparams->Coeffs;
+ const float gainstep{hrtfparams->GainStep};
+ const float gain{hrtfparams->Gain};
+
+ size_t ldelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[0]};
+ size_t rdelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[1]};
+ float stepcount{0.0f};
+ for(size_t i{0u};i < BufferSize;++i)
+ {
+ const float g{gain + gainstep*stepcount};
+ const float left{InSamples[ldelay++] * g};
+ const float right{InSamples[rdelay++] * g};
+ ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right);
+
+ stepcount += 1.0f;
+ }
+}
+
+template<ApplyCoeffsT ApplyCoeffs>
+inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples,
+ const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
+ const size_t BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ const auto &OldCoeffs = oldparams->Coeffs;
+ const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)};
+ const auto &NewCoeffs = *newparams->Coeffs;
+ const float newGainStep{newparams->GainStep};
+
+ if LIKELY(oldparams->Gain > GainSilenceThreshold)
+ {
+ size_t ldelay{HRTF_HISTORY_LENGTH - oldparams->Delay[0]};
+ size_t rdelay{HRTF_HISTORY_LENGTH - oldparams->Delay[1]};
+ auto stepcount = static_cast<float>(BufferSize);
+ for(size_t i{0u};i < BufferSize;++i)
+ {
+ const float g{oldGainStep*stepcount};
+ const float left{InSamples[ldelay++] * g};
+ const float right{InSamples[rdelay++] * g};
+ ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right);
+
+ stepcount -= 1.0f;
+ }
+ }
+
+ if LIKELY(newGainStep*static_cast<float>(BufferSize) > GainSilenceThreshold)
+ {
+ size_t ldelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[0]};
+ size_t rdelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[1]};
+ float stepcount{1.0f};
+ for(size_t i{1u};i < BufferSize;++i)
+ {
+ const float g{newGainStep*stepcount};
+ const float left{InSamples[ldelay++] * g};
+ const float right{InSamples[rdelay++] * g};
+ ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right);
+
+ stepcount += 1.0f;
+ }
+ }
+}
+
+template<ApplyCoeffsT ApplyCoeffs>
+inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ /* Add the existing signal directly to the accumulation buffer, unfiltered,
+ * and with a delay to align with the input delay.
+ */
+ for(size_t i{0};i < BufferSize;++i)
+ {
+ AccumSamples[HRTF_DIRECT_DELAY+i][0] += LeftOut[i];
+ AccumSamples[HRTF_DIRECT_DELAY+i][1] += RightOut[i];
+ }
+
+ for(const FloatBufferLine &input : InSamples)
+ {
+ /* For dual-band processing, the signal needs extra scaling applied to
+ * the high frequency response. The band-splitter alone creates a
+ * frequency-dependent phase shift, which is not ideal. To counteract
+ * it, combine it with a backwards phase shift.
+ */
+
+ /* Load the input signal backwards, into a temp buffer with delay
+ * padding. The delay serves to reduce the error caused by the IIR
+ * filter's phase shift on a partial input.
+ */
+ al::span<float> tempbuf{al::assume_aligned<16>(TempBuf), HRTF_DIRECT_DELAY+BufferSize};
+ auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin());
+ std::copy(ChanState->mDelay.cbegin(), ChanState->mDelay.cend(), tmpiter);
+
+ /* Save the unfiltered newest input samples for next time. */
+ std::copy_n(tempbuf.begin(), ChanState->mDelay.size(), ChanState->mDelay.begin());
+
+ /* Apply the all-pass on the reversed signal and reverse the resulting
+ * sample array. This produces the forward response with a backwards
+ * phase shift (+n degrees becomes -n degrees).
+ */
+ ChanState->mSplitter.applyAllpass(tempbuf);
+ tempbuf = tempbuf.subspan<HRTF_DIRECT_DELAY>();
+ std::reverse(tempbuf.begin(), tempbuf.end());
+
+ /* Now apply the HF scale with the band-splitter. This applies the
+ * forward phase shift, which cancels out with the backwards phase
+ * shift to get the original phase on the scaled signal.
+ */
+ ChanState->mSplitter.processHfScale(tempbuf, ChanState->mHfScale);
+
+ /* Now apply the HRIR coefficients to this channel. */
+ const auto &Coeffs = ChanState->mCoeffs;
+ for(size_t i{0u};i < BufferSize;++i)
+ {
+ const float insample{tempbuf[i]};
+ ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample);
+ }
+
+ ++ChanState;
+ }
+
+ for(size_t i{0u};i < BufferSize;++i)
+ LeftOut[i] = AccumSamples[i][0];
+ for(size_t i{0u};i < BufferSize;++i)
+ RightOut[i] = AccumSamples[i][1];
+
+ /* Copy the new in-progress accumulation values to the front and clear the
+ * following samples for the next mix.
+ */
+ auto accum_iter = std::copy_n(AccumSamples+BufferSize, HRIR_LENGTH+HRTF_DIRECT_DELAY,
+ AccumSamples);
+ std::fill_n(accum_iter, BufferSize, float2{});
+}
+
+#endif /* CORE_MIXER_HRTFBASE_H */