diff options
Diffstat (limited to 'utils/makehrtf.cpp')
-rw-r--r-- | utils/makehrtf.cpp | 3455 |
1 files changed, 3455 insertions, 0 deletions
diff --git a/utils/makehrtf.cpp b/utils/makehrtf.cpp new file mode 100644 index 00000000..f8844239 --- /dev/null +++ b/utils/makehrtf.cpp @@ -0,0 +1,3455 @@ +/* + * HRTF utility for producing and demonstrating the process of creating an + * OpenAL Soft compatible HRIR data set. + * + * Copyright (C) 2011-2017 Christopher Fitzgerald + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * + * -------------------------------------------------------------------------- + * + * A big thanks goes out to all those whose work done in the field of + * binaural sound synthesis using measured HRTFs makes this utility and the + * OpenAL Soft implementation possible. + * + * The algorithm for diffuse-field equalization was adapted from the work + * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of + * MIT Media Laboratory. It operates as follows: + * + * 1. Take the FFT of each HRIR and only keep the magnitude responses. + * 2. Calculate the diffuse-field power-average of all HRIRs weighted by + * their contribution to the total surface area covered by their + * measurement. + * 3. Take the diffuse-field average and limit its magnitude range. + * 4. Equalize the responses by using the inverse of the diffuse-field + * average. + * 5. Reconstruct the minimum-phase responses. + * 5. Zero the DC component. + * 6. IFFT the result and truncate to the desired-length minimum-phase FIR. + * + * The spherical head algorithm for calculating propagation delay was adapted + * from the paper: + * + * Modeling Interaural Time Difference Assuming a Spherical Head + * Joel David Miller + * Music 150, Musical Acoustics, Stanford University + * December 2, 2001 + * + * The formulae for calculating the Kaiser window metrics are from the + * the textbook: + * + * Discrete-Time Signal Processing + * Alan V. Oppenheim and Ronald W. Schafer + * Prentice-Hall Signal Processing Series + * 1999 + */ + +#include "config.h" + +#define _UNICODE +#include <stdio.h> +#include <stdlib.h> +#include <stdarg.h> +#include <stddef.h> +#include <string.h> +#include <limits.h> +#include <ctype.h> +#include <math.h> +#ifdef HAVE_STRINGS_H +#include <strings.h> +#endif +#ifdef HAVE_GETOPT +#include <unistd.h> +#else +#include "getopt.h" +#endif + +#include "win_main_utf8.h" + +/* Define int64_t and uint64_t types */ +#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L +#include <inttypes.h> +#elif defined(_WIN32) && defined(__GNUC__) +#include <stdint.h> +#elif defined(_WIN32) +typedef __int64 int64_t; +typedef unsigned __int64 uint64_t; +#else +/* Fallback if nothing above works */ +#include <inttypes.h> +#endif + +#ifndef M_PI +#define M_PI (3.14159265358979323846) +#endif + +#ifndef HUGE_VAL +#define HUGE_VAL (1.0 / 0.0) +#endif + + +// The epsilon used to maintain signal stability. +#define EPSILON (1e-9) + +// Constants for accessing the token reader's ring buffer. +#define TR_RING_BITS (16) +#define TR_RING_SIZE (1 << TR_RING_BITS) +#define TR_RING_MASK (TR_RING_SIZE - 1) + +// The token reader's load interval in bytes. +#define TR_LOAD_SIZE (TR_RING_SIZE >> 2) + +// The maximum identifier length used when processing the data set +// definition. +#define MAX_IDENT_LEN (16) + +// The maximum path length used when processing filenames. +#define MAX_PATH_LEN (256) + +// The limits for the sample 'rate' metric in the data set definition and for +// resampling. +#define MIN_RATE (32000) +#define MAX_RATE (96000) + +// The limits for the HRIR 'points' metric in the data set definition. +#define MIN_POINTS (16) +#define MAX_POINTS (8192) + +// The limit to the number of 'distances' listed in the data set definition. +#define MAX_FD_COUNT (16) + +// The limits to the number of 'azimuths' listed in the data set definition. +#define MIN_EV_COUNT (5) +#define MAX_EV_COUNT (128) + +// The limits for each of the 'azimuths' listed in the data set definition. +#define MIN_AZ_COUNT (1) +#define MAX_AZ_COUNT (128) + +// The limits for the listener's head 'radius' in the data set definition. +#define MIN_RADIUS (0.05) +#define MAX_RADIUS (0.15) + +// The limits for the 'distance' from source to listener for each field in +// the definition file. +#define MIN_DISTANCE (0.05) +#define MAX_DISTANCE (2.50) + +// The maximum number of channels that can be addressed for a WAVE file +// source listed in the data set definition. +#define MAX_WAVE_CHANNELS (65535) + +// The limits to the byte size for a binary source listed in the definition +// file. +#define MIN_BIN_SIZE (2) +#define MAX_BIN_SIZE (4) + +// The minimum number of significant bits for binary sources listed in the +// data set definition. The maximum is calculated from the byte size. +#define MIN_BIN_BITS (16) + +// The limits to the number of significant bits for an ASCII source listed in +// the data set definition. +#define MIN_ASCII_BITS (16) +#define MAX_ASCII_BITS (32) + +// The limits to the FFT window size override on the command line. +#define MIN_FFTSIZE (65536) +#define MAX_FFTSIZE (131072) + +// The limits to the equalization range limit on the command line. +#define MIN_LIMIT (2.0) +#define MAX_LIMIT (120.0) + +// The limits to the truncation window size on the command line. +#define MIN_TRUNCSIZE (16) +#define MAX_TRUNCSIZE (512) + +// The limits to the custom head radius on the command line. +#define MIN_CUSTOM_RADIUS (0.05) +#define MAX_CUSTOM_RADIUS (0.15) + +// The truncation window size must be a multiple of the below value to allow +// for vectorized convolution. +#define MOD_TRUNCSIZE (8) + +// The defaults for the command line options. +#define DEFAULT_FFTSIZE (65536) +#define DEFAULT_EQUALIZE (1) +#define DEFAULT_SURFACE (1) +#define DEFAULT_LIMIT (24.0) +#define DEFAULT_TRUNCSIZE (32) +#define DEFAULT_HEAD_MODEL (HM_DATASET) +#define DEFAULT_CUSTOM_RADIUS (0.0) + +// The four-character-codes for RIFF/RIFX WAVE file chunks. +#define FOURCC_RIFF (0x46464952) // 'RIFF' +#define FOURCC_RIFX (0x58464952) // 'RIFX' +#define FOURCC_WAVE (0x45564157) // 'WAVE' +#define FOURCC_FMT (0x20746D66) // 'fmt ' +#define FOURCC_DATA (0x61746164) // 'data' +#define FOURCC_LIST (0x5453494C) // 'LIST' +#define FOURCC_WAVL (0x6C766177) // 'wavl' +#define FOURCC_SLNT (0x746E6C73) // 'slnt' + +// The supported wave formats. +#define WAVE_FORMAT_PCM (0x0001) +#define WAVE_FORMAT_IEEE_FLOAT (0x0003) +#define WAVE_FORMAT_EXTENSIBLE (0xFFFE) + +// The maximum propagation delay value supported by OpenAL Soft. +#define MAX_HRTD (63.0) + +// The OpenAL Soft HRTF format marker. It stands for minimum-phase head +// response protocol 02. +#define MHR_FORMAT ("MinPHR02") + +// Sample and channel type enum values. +typedef enum SampleTypeT { + ST_S16 = 0, + ST_S24 = 1 +} SampleTypeT; + +// Certain iterations rely on these integer enum values. +typedef enum ChannelTypeT { + CT_NONE = -1, + CT_MONO = 0, + CT_STEREO = 1 +} ChannelTypeT; + +// Byte order for the serialization routines. +typedef enum ByteOrderT { + BO_NONE, + BO_LITTLE, + BO_BIG +} ByteOrderT; + +// Source format for the references listed in the data set definition. +typedef enum SourceFormatT { + SF_NONE, + SF_WAVE, // RIFF/RIFX WAVE file. + SF_BIN_LE, // Little-endian binary file. + SF_BIN_BE, // Big-endian binary file. + SF_ASCII // ASCII text file. +} SourceFormatT; + +// Element types for the references listed in the data set definition. +typedef enum ElementTypeT { + ET_NONE, + ET_INT, // Integer elements. + ET_FP // Floating-point elements. +} ElementTypeT; + +// Head model used for calculating the impulse delays. +typedef enum HeadModelT { + HM_NONE, + HM_DATASET, // Measure the onset from the dataset. + HM_SPHERE // Calculate the onset using a spherical head model. +} HeadModelT; + +// Unsigned integer type. +typedef unsigned int uint; + +// Serialization types. The trailing digit indicates the number of bits. +typedef unsigned char uint8; +typedef int int32; +typedef unsigned int uint32; +typedef uint64_t uint64; + +// Token reader state for parsing the data set definition. +typedef struct TokenReaderT { + FILE *mFile; + const char *mName; + uint mLine; + uint mColumn; + char mRing[TR_RING_SIZE]; + size_t mIn; + size_t mOut; +} TokenReaderT; + +// Source reference state used when loading sources. +typedef struct SourceRefT { + SourceFormatT mFormat; + ElementTypeT mType; + uint mSize; + int mBits; + uint mChannel; + uint mSkip; + uint mOffset; + char mPath[MAX_PATH_LEN+1]; +} SourceRefT; + +// Structured HRIR storage for stereo azimuth pairs, elevations, and fields. +typedef struct HrirAzT { + double mAzimuth; + uint mIndex; + double mDelays[2]; + double *mIrs[2]; +} HrirAzT; + +typedef struct HrirEvT { + double mElevation; + uint mIrCount; + uint mAzCount; + HrirAzT *mAzs; +} HrirEvT; + +typedef struct HrirFdT { + double mDistance; + uint mIrCount; + uint mEvCount; + uint mEvStart; + HrirEvT *mEvs; +} HrirFdT; + +// The HRIR metrics and data set used when loading, processing, and storing +// the resulting HRTF. +typedef struct HrirDataT { + uint mIrRate; + SampleTypeT mSampleType; + ChannelTypeT mChannelType; + uint mIrPoints; + uint mFftSize; + uint mIrSize; + double mRadius; + uint mIrCount; + uint mFdCount; + HrirFdT *mFds; +} HrirDataT; + +// The resampler metrics and FIR filter. +typedef struct ResamplerT { + uint mP, mQ, mM, mL; + double *mF; +} ResamplerT; + + +/**************************************** + *** Complex number type and routines *** + ****************************************/ + +typedef struct { + double Real, Imag; +} Complex; + +static Complex MakeComplex(double r, double i) +{ + Complex c = { r, i }; + return c; +} + +static Complex c_add(Complex a, Complex b) +{ + Complex r; + r.Real = a.Real + b.Real; + r.Imag = a.Imag + b.Imag; + return r; +} + +static Complex c_sub(Complex a, Complex b) +{ + Complex r; + r.Real = a.Real - b.Real; + r.Imag = a.Imag - b.Imag; + return r; +} + +static Complex c_mul(Complex a, Complex b) +{ + Complex r; + r.Real = a.Real*b.Real - a.Imag*b.Imag; + r.Imag = a.Imag*b.Real + a.Real*b.Imag; + return r; +} + +static Complex c_muls(Complex a, double s) +{ + Complex r; + r.Real = a.Real * s; + r.Imag = a.Imag * s; + return r; +} + +static double c_abs(Complex a) +{ + return sqrt(a.Real*a.Real + a.Imag*a.Imag); +} + +static Complex c_exp(Complex a) +{ + Complex r; + double e = exp(a.Real); + r.Real = e * cos(a.Imag); + r.Imag = e * sin(a.Imag); + return r; +} + +/***************************** + *** Token reader routines *** + *****************************/ + +/* Whitespace is not significant. It can process tokens as identifiers, numbers + * (integer and floating-point), strings, and operators. Strings must be + * encapsulated by double-quotes and cannot span multiple lines. + */ + +// Setup the reader on the given file. The filename can be NULL if no error +// output is desired. +static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr) +{ + const char *name = NULL; + + if(filename) + { + const char *slash = strrchr(filename, '/'); + if(slash) + { + const char *bslash = strrchr(slash+1, '\\'); + if(bslash) name = bslash+1; + else name = slash+1; + } + else + { + const char *bslash = strrchr(filename, '\\'); + if(bslash) name = bslash+1; + else name = filename; + } + } + + tr->mFile = fp; + tr->mName = name; + tr->mLine = 1; + tr->mColumn = 1; + tr->mIn = 0; + tr->mOut = 0; +} + +// Prime the reader's ring buffer, and return a result indicating that there +// is text to process. +static int TrLoad(TokenReaderT *tr) +{ + size_t toLoad, in, count; + + toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut); + if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile)) + { + // Load TR_LOAD_SIZE (or less if at the end of the file) per read. + toLoad = TR_LOAD_SIZE; + in = tr->mIn&TR_RING_MASK; + count = TR_RING_SIZE - in; + if(count < toLoad) + { + tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile); + tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile); + } + else + tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile); + + if(tr->mOut >= TR_RING_SIZE) + { + tr->mOut -= TR_RING_SIZE; + tr->mIn -= TR_RING_SIZE; + } + } + if(tr->mIn > tr->mOut) + return 1; + return 0; +} + +// Error display routine. Only displays when the base name is not NULL. +static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr) +{ + if(!tr->mName) + return; + fprintf(stderr, "Error (%s:%u:%u): ", tr->mName, line, column); + vfprintf(stderr, format, argPtr); +} + +// Used to display an error at a saved line/column. +static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...) +{ + va_list argPtr; + + va_start(argPtr, format); + TrErrorVA(tr, line, column, format, argPtr); + va_end(argPtr); +} + +// Used to display an error at the current line/column. +static void TrError(const TokenReaderT *tr, const char *format, ...) +{ + va_list argPtr; + + va_start(argPtr, format); + TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr); + va_end(argPtr); +} + +// Skips to the next line. +static void TrSkipLine(TokenReaderT *tr) +{ + char ch; + + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + tr->mOut++; + if(ch == '\n') + { + tr->mLine++; + tr->mColumn = 1; + break; + } + tr->mColumn ++; + } +} + +// Skips to the next token. +static int TrSkipWhitespace(TokenReaderT *tr) +{ + char ch; + + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(isspace(ch)) + { + tr->mOut++; + if(ch == '\n') + { + tr->mLine++; + tr->mColumn = 1; + } + else + tr->mColumn++; + } + else if(ch == '#') + TrSkipLine(tr); + else + return 1; + } + return 0; +} + +// Get the line and/or column of the next token (or the end of input). +static void TrIndication(TokenReaderT *tr, uint *line, uint *column) +{ + TrSkipWhitespace(tr); + if(line) *line = tr->mLine; + if(column) *column = tr->mColumn; +} + +// Checks to see if a token is (likely to be) an identifier. It does not +// display any errors and will not proceed to the next token. +static int TrIsIdent(TokenReaderT *tr) +{ + char ch; + + if(!TrSkipWhitespace(tr)) + return 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + return ch == '_' || isalpha(ch); +} + + +// Checks to see if a token is the given operator. It does not display any +// errors and will not proceed to the next token. +static int TrIsOperator(TokenReaderT *tr, const char *op) +{ + size_t out, len; + char ch; + + if(!TrSkipWhitespace(tr)) + return 0; + out = tr->mOut; + len = 0; + while(op[len] != '\0' && out < tr->mIn) + { + ch = tr->mRing[out&TR_RING_MASK]; + if(ch != op[len]) break; + len++; + out++; + } + if(op[len] == '\0') + return 1; + return 0; +} + +/* The TrRead*() routines obtain the value of a matching token type. They + * display type, form, and boundary errors and will proceed to the next + * token. + */ + +// Reads and validates an identifier token. +static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '_' || isalpha(ch)) + { + len = 0; + do { + if(len < maxLen) + ident[len] = ch; + len++; + tr->mOut++; + if(!TrLoad(tr)) + break; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + } while(ch == '_' || isdigit(ch) || isalpha(ch)); + + tr->mColumn += len; + if(len < maxLen) + { + ident[len] = '\0'; + return 1; + } + TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n"); + return 0; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n"); + return 0; +} + +// Reads and validates (including bounds) an integer token. +static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) +{ + uint col, digis, len; + char ch, temp[64+1]; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '+' || ch == '-') + { + temp[len] = ch; + len++; + tr->mOut++; + } + digis = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + tr->mColumn += len; + if(digis > 0 && ch != '.' && !isalpha(ch)) + { + if(len > 64) + { + TrErrorAt(tr, tr->mLine, col, "Integer is too long."); + return 0; + } + temp[len] = '\0'; + *value = strtol(temp, NULL, 10); + if(*value < loBound || *value > hiBound) + { + TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); + return 0; + } + return 1; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n"); + return 0; +} + +// Reads and validates (including bounds) a float token. +static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) +{ + uint col, digis, len; + char ch, temp[64+1]; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '+' || ch == '-') + { + temp[len] = ch; + len++; + tr->mOut++; + } + + digis = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + if(ch == '.') + { + if(len < 64) + temp[len] = ch; + len++; + tr->mOut++; + } + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + if(digis > 0) + { + if(ch == 'E' || ch == 'e') + { + if(len < 64) + temp[len] = ch; + len++; + digis = 0; + tr->mOut++; + if(ch == '+' || ch == '-') + { + if(len < 64) + temp[len] = ch; + len++; + tr->mOut++; + } + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + } + tr->mColumn += len; + if(digis > 0 && ch != '.' && !isalpha(ch)) + { + if(len > 64) + { + TrErrorAt(tr, tr->mLine, col, "Float is too long."); + return 0; + } + temp[len] = '\0'; + *value = strtod(temp, NULL); + if(*value < loBound || *value > hiBound) + { + TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); + return 0; + } + return 1; + } + } + else + tr->mColumn += len; + } + TrErrorAt(tr, tr->mLine, col, "Expected a float.\n"); + return 0; +} + +// Reads and validates a string token. +static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '\"') + { + tr->mOut++; + len = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + tr->mOut++; + if(ch == '\"') + break; + if(ch == '\n') + { + TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n"); + return 0; + } + if(len < maxLen) + text[len] = ch; + len++; + } + if(ch != '\"') + { + tr->mColumn += 1 + len; + TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n"); + return 0; + } + tr->mColumn += 2 + len; + if(len > maxLen) + { + TrErrorAt(tr, tr->mLine, col, "String is too long.\n"); + return 0; + } + text[len] = '\0'; + return 1; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected a string.\n"); + return 0; +} + +// Reads and validates the given operator. +static int TrReadOperator(TokenReaderT *tr, const char *op) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + while(op[len] != '\0' && TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch != op[len]) break; + len++; + tr->mOut++; + } + tr->mColumn += len; + if(op[len] == '\0') + return 1; + } + TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op); + return 0; +} + +/* Performs a string substitution. Any case-insensitive occurrences of the + * pattern string are replaced with the replacement string. The result is + * truncated if necessary. + */ +static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out) +{ + size_t inLen, patLen, repLen; + size_t si, di; + int truncated; + + inLen = strlen(in); + patLen = strlen(pat); + repLen = strlen(rep); + si = 0; + di = 0; + truncated = 0; + while(si < inLen && di < maxLen) + { + if(patLen <= inLen-si) + { + if(strncasecmp(&in[si], pat, patLen) == 0) + { + if(repLen > maxLen-di) + { + repLen = maxLen - di; + truncated = 1; + } + strncpy(&out[di], rep, repLen); + si += patLen; + di += repLen; + } + } + out[di] = in[si]; + si++; + di++; + } + if(si < inLen) + truncated = 1; + out[di] = '\0'; + return !truncated; +} + + +/********************* + *** Math routines *** + *********************/ + +// Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013). +#if defined(_MSC_VER) && _MSC_VER < 1800 +static double round(double val) +{ + if(val < 0.0) + return ceil(val-0.5); + return floor(val+0.5); +} + +static double fmin(double a, double b) +{ + return (a<b) ? a : b; +} + +static double fmax(double a, double b) +{ + return (a>b) ? a : b; +} +#endif + +// Simple clamp routine. +static double Clamp(const double val, const double lower, const double upper) +{ + return fmin(fmax(val, lower), upper); +} + +// Performs linear interpolation. +static double Lerp(const double a, const double b, const double f) +{ + return a + f * (b - a); +} + +static inline uint dither_rng(uint *seed) +{ + *seed = *seed * 96314165 + 907633515; + return *seed; +} + +// Performs a triangular probability density function dither. The input samples +// should be normalized (-1 to +1). +static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale, + const int count, const int step, uint *seed) +{ + static const double PRNG_SCALE = 1.0 / UINT_MAX; + uint prn0, prn1; + int i; + + for(i = 0;i < count;i++) + { + prn0 = dither_rng(seed); + prn1 = dither_rng(seed); + out[i*step] = round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE)); + } +} + +// Allocates an array of doubles. +static double *CreateDoubles(size_t n) +{ + double *a; + + a = static_cast<double*>(calloc(n?n:1, sizeof(*a))); + if(a == NULL) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + return a; +} + +// Allocates an array of complex numbers. +static Complex *CreateComplexes(size_t n) +{ + Complex *a; + + a = static_cast<Complex*>(calloc(n?n:1, sizeof(*a))); + if(a == NULL) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + return a; +} + +/* Fast Fourier transform routines. The number of points must be a power of + * two. + */ + +// Performs bit-reversal ordering. +static void FftArrange(const uint n, Complex *inout) +{ + uint rk, k, m; + + // Handle in-place arrangement. + rk = 0; + for(k = 0;k < n;k++) + { + if(rk > k) + { + Complex temp = inout[rk]; + inout[rk] = inout[k]; + inout[k] = temp; + } + + m = n; + while(rk&(m >>= 1)) + rk &= ~m; + rk |= m; + } +} + +// Performs the summation. +static void FftSummation(const int n, const double s, Complex *cplx) +{ + double pi; + int m, m2; + int i, k, mk; + + pi = s * M_PI; + for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1) + { + // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m)) + double sm = sin(0.5 * pi / m); + Complex v = MakeComplex(-2.0*sm*sm, -sin(pi / m)); + Complex w = MakeComplex(1.0, 0.0); + for(i = 0;i < m;i++) + { + for(k = i;k < n;k += m2) + { + Complex t; + mk = k + m; + t = c_mul(w, cplx[mk]); + cplx[mk] = c_sub(cplx[k], t); + cplx[k] = c_add(cplx[k], t); + } + w = c_add(w, c_mul(v, w)); + } + } +} + +// Performs a forward FFT. +static void FftForward(const uint n, Complex *inout) +{ + FftArrange(n, inout); + FftSummation(n, 1.0, inout); +} + +// Performs an inverse FFT. +static void FftInverse(const uint n, Complex *inout) +{ + double f; + uint i; + + FftArrange(n, inout); + FftSummation(n, -1.0, inout); + f = 1.0 / n; + for(i = 0;i < n;i++) + inout[i] = c_muls(inout[i], f); +} + +/* Calculate the complex helical sequence (or discrete-time analytical signal) + * of the given input using the Hilbert transform. Given the natural logarithm + * of a signal's magnitude response, the imaginary components can be used as + * the angles for minimum-phase reconstruction. + */ +static void Hilbert(const uint n, Complex *inout) +{ + uint i; + + // Handle in-place operation. + for(i = 0;i < n;i++) + inout[i].Imag = 0.0; + + FftInverse(n, inout); + for(i = 1;i < (n+1)/2;i++) + inout[i] = c_muls(inout[i], 2.0); + /* Increment i if n is even. */ + i += (n&1)^1; + for(;i < n;i++) + inout[i] = MakeComplex(0.0, 0.0); + FftForward(n, inout); +} + +/* Calculate the magnitude response of the given input. This is used in + * place of phase decomposition, since the phase residuals are discarded for + * minimum phase reconstruction. The mirrored half of the response is also + * discarded. + */ +static void MagnitudeResponse(const uint n, const Complex *in, double *out) +{ + const uint m = 1 + (n / 2); + uint i; + for(i = 0;i < m;i++) + out[i] = fmax(c_abs(in[i]), EPSILON); +} + +/* Apply a range limit (in dB) to the given magnitude response. This is used + * to adjust the effects of the diffuse-field average on the equalization + * process. + */ +static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out) +{ + double halfLim; + uint i, lower, upper; + double ave; + + halfLim = limit / 2.0; + // Convert the response to dB. + for(i = 0;i < m;i++) + out[i] = 20.0 * log10(in[i]); + // Use six octaves to calculate the average magnitude of the signal. + lower = ((uint)ceil(n / pow(2.0, 8.0))) - 1; + upper = ((uint)floor(n / pow(2.0, 2.0))) - 1; + ave = 0.0; + for(i = lower;i <= upper;i++) + ave += out[i]; + ave /= upper - lower + 1; + // Keep the response within range of the average magnitude. + for(i = 0;i < m;i++) + out[i] = Clamp(out[i], ave - halfLim, ave + halfLim); + // Convert the response back to linear magnitude. + for(i = 0;i < m;i++) + out[i] = pow(10.0, out[i] / 20.0); +} + +/* Reconstructs the minimum-phase component for the given magnitude response + * of a signal. This is equivalent to phase recomposition, sans the missing + * residuals (which were discarded). The mirrored half of the response is + * reconstructed. + */ +static void MinimumPhase(const uint n, const double *in, Complex *out) +{ + const uint m = 1 + (n / 2); + double *mags; + uint i; + + mags = CreateDoubles(n); + for(i = 0;i < m;i++) + { + mags[i] = fmax(EPSILON, in[i]); + out[i] = MakeComplex(log(mags[i]), 0.0); + } + for(;i < n;i++) + { + mags[i] = mags[n - i]; + out[i] = out[n - i]; + } + Hilbert(n, out); + // Remove any DC offset the filter has. + mags[0] = EPSILON; + for(i = 0;i < n;i++) + { + Complex a = c_exp(MakeComplex(0.0, out[i].Imag)); + out[i] = c_mul(MakeComplex(mags[i], 0.0), a); + } + free(mags); +} + + +/*************************** + *** Resampler functions *** + ***************************/ + +/* This is the normalized cardinal sine (sinc) function. + * + * sinc(x) = { 1, x = 0 + * { sin(pi x) / (pi x), otherwise. + */ +static double Sinc(const double x) +{ + if(fabs(x) < EPSILON) + return 1.0; + return sin(M_PI * x) / (M_PI * x); +} + +/* The zero-order modified Bessel function of the first kind, used for the + * Kaiser window. + * + * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) + * = sum_{k=0}^inf ((x / 2)^k / k!)^2 + */ +static double BesselI_0(const double x) +{ + double term, sum, x2, y, last_sum; + int k; + + // Start at k=1 since k=0 is trivial. + term = 1.0; + sum = 1.0; + x2 = x/2.0; + k = 1; + + // Let the integration converge until the term of the sum is no longer + // significant. + do { + y = x2 / k; + k++; + last_sum = sum; + term *= y * y; + sum += term; + } while(sum != last_sum); + return sum; +} + +/* Calculate a Kaiser window from the given beta value and a normalized k + * [-1, 1]. + * + * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 + * { 0, elsewhere. + * + * Where k can be calculated as: + * + * k = i / l, where -l <= i <= l. + * + * or: + * + * k = 2 i / M - 1, where 0 <= i <= M. + */ +static double Kaiser(const double b, const double k) +{ + if(!(k >= -1.0 && k <= 1.0)) + return 0.0; + return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b); +} + +// Calculates the greatest common divisor of a and b. +static uint Gcd(uint x, uint y) +{ + while(y > 0) + { + uint z = y; + y = x % y; + x = z; + } + return x; +} + +/* Calculates the size (order) of the Kaiser window. Rejection is in dB and + * the transition width is normalized frequency (0.5 is nyquist). + * + * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21 + * { ceil(5.79 / 2 pi f_t), r <= 21. + * + */ +static uint CalcKaiserOrder(const double rejection, const double transition) +{ + double w_t = 2.0 * M_PI * transition; + if(rejection > 21.0) + return (uint)ceil((rejection - 7.95) / (2.285 * w_t)); + return (uint)ceil(5.79 / w_t); +} + +// Calculates the beta value of the Kaiser window. Rejection is in dB. +static double CalcKaiserBeta(const double rejection) +{ + if(rejection > 50.0) + return 0.1102 * (rejection - 8.7); + if(rejection >= 21.0) + return (0.5842 * pow(rejection - 21.0, 0.4)) + + (0.07886 * (rejection - 21.0)); + return 0.0; +} + +/* Calculates a point on the Kaiser-windowed sinc filter for the given half- + * width, beta, gain, and cutoff. The point is specified in non-normalized + * samples, from 0 to M, where M = (2 l + 1). + * + * w(k) 2 p f_t sinc(2 f_t x) + * + * x -- centered sample index (i - l) + * k -- normalized and centered window index (x / l) + * w(k) -- window function (Kaiser) + * p -- gain compensation factor when sampling + * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist) + */ +static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i) +{ + return Kaiser(b, (double)(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l)); +} + +/* This is a polyphase sinc-filtered resampler. + * + * Upsample Downsample + * + * p/q = 3/2 p/q = 3/5 + * + * M-+-+-+-> M-+-+-+-> + * -------------------+ ---------------------+ + * p s * f f f f|f| | p s * f f f f f | + * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| | + * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 | + * s * f|f|f f f | s * f f|f|f f | + * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 | + * --------+=+--------+ 0 * |0|0 0 0 0 | + * d . d .|d|. d . d ----------+=+--------+ + * d . . . .|d|. . . . + * q-> + * q-+-+-+-> + * + * P_f(i,j) = q i mod p + pj + * P_s(i,j) = floor(q i / p) - j + * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} { + * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M + * { 0, P_f(i,j) >= M. } + */ + +// Calculate the resampling metrics and build the Kaiser-windowed sinc filter +// that's used to cut frequencies above the destination nyquist. +static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate) +{ + double cutoff, width, beta; + uint gcd, l; + int i; + + gcd = Gcd(srcRate, dstRate); + rs->mP = dstRate / gcd; + rs->mQ = srcRate / gcd; + /* The cutoff is adjusted by half the transition width, so the transition + * ends before the nyquist (0.5). Both are scaled by the downsampling + * factor. + */ + if(rs->mP > rs->mQ) + { + cutoff = 0.475 / rs->mP; + width = 0.05 / rs->mP; + } + else + { + cutoff = 0.475 / rs->mQ; + width = 0.05 / rs->mQ; + } + // A rejection of -180 dB is used for the stop band. Round up when + // calculating the left offset to avoid increasing the transition width. + l = (CalcKaiserOrder(180.0, width)+1) / 2; + beta = CalcKaiserBeta(180.0); + rs->mM = l*2 + 1; + rs->mL = l; + rs->mF = CreateDoubles(rs->mM); + for(i = 0;i < ((int)rs->mM);i++) + rs->mF[i] = SincFilter((int)l, beta, rs->mP, cutoff, i); +} + +// Clean up after the resampler. +static void ResamplerClear(ResamplerT *rs) +{ + free(rs->mF); + rs->mF = NULL; +} + +// Perform the upsample-filter-downsample resampling operation using a +// polyphase filter implementation. +static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out) +{ + const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL; + const double *f = rs->mF; + uint j_f, j_s; + double *work; + uint i; + + if(outN == 0) + return; + + // Handle in-place operation. + if(in == out) + work = CreateDoubles(outN); + else + work = out; + // Resample the input. + for(i = 0;i < outN;i++) + { + double r = 0.0; + // Input starts at l to compensate for the filter delay. This will + // drop any build-up from the first half of the filter. + j_f = (l + (q * i)) % p; + j_s = (l + (q * i)) / p; + while(j_f < m) + { + // Only take input when 0 <= j_s < inN. This single unsigned + // comparison catches both cases. + if(j_s < inN) + r += f[j_f] * in[j_s]; + j_f += p; + j_s--; + } + work[i] = r; + } + // Clean up after in-place operation. + if(work != out) + { + for(i = 0;i < outN;i++) + out[i] = work[i]; + free(work); + } +} + +/************************* + *** File source input *** + *************************/ + +// Read a binary value of the specified byte order and byte size from a file, +// storing it as a 32-bit unsigned integer. +static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32 *out) +{ + uint8 in[4]; + uint32 accum; + uint i; + + if(fread(in, 1, bytes, fp) != bytes) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + accum = 0; + switch(order) + { + case BO_LITTLE: + for(i = 0;i < bytes;i++) + accum = (accum<<8) | in[bytes - i - 1]; + break; + case BO_BIG: + for(i = 0;i < bytes;i++) + accum = (accum<<8) | in[i]; + break; + default: + break; + } + *out = accum; + return 1; +} + +// Read a binary value of the specified byte order from a file, storing it as +// a 64-bit unsigned integer. +static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64 *out) +{ + uint8 in [8]; + uint64 accum; + uint i; + + if(fread(in, 1, 8, fp) != 8) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + accum = 0ULL; + switch(order) + { + case BO_LITTLE: + for(i = 0;i < 8;i++) + accum = (accum<<8) | in[8 - i - 1]; + break; + case BO_BIG: + for(i = 0;i < 8;i++) + accum = (accum<<8) | in[i]; + break; + default: + break; + } + *out = accum; + return 1; +} + +/* Read a binary value of the specified type, byte order, and byte size from + * a file, converting it to a double. For integer types, the significant + * bits are used to normalize the result. The sign of bits determines + * whether they are padded toward the MSB (negative) or LSB (positive). + * Floating-point types are not normalized. + */ +static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out) +{ + union { + uint32 ui; + int32 i; + float f; + } v4; + union { + uint64 ui; + double f; + } v8; + + *out = 0.0; + if(bytes > 4) + { + if(!ReadBin8(fp, filename, order, &v8.ui)) + return 0; + if(type == ET_FP) + *out = v8.f; + } + else + { + if(!ReadBin4(fp, filename, order, bytes, &v4.ui)) + return 0; + if(type == ET_FP) + *out = v4.f; + else + { + if(bits > 0) + v4.ui >>= (8*bytes) - ((uint)bits); + else + v4.ui &= (0xFFFFFFFF >> (32+bits)); + + if(v4.ui&(uint)(1<<(abs(bits)-1))) + v4.ui |= (0xFFFFFFFF << abs (bits)); + *out = v4.i / (double)(1<<(abs(bits)-1)); + } + } + return 1; +} + +/* Read an ascii value of the specified type from a file, converting it to a + * double. For integer types, the significant bits are used to normalize the + * result. The sign of the bits should always be positive. This also skips + * up to one separator character before the element itself. + */ +static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out) +{ + if(TrIsOperator(tr, ",")) + TrReadOperator(tr, ","); + else if(TrIsOperator(tr, ":")) + TrReadOperator(tr, ":"); + else if(TrIsOperator(tr, ";")) + TrReadOperator(tr, ";"); + else if(TrIsOperator(tr, "|")) + TrReadOperator(tr, "|"); + + if(type == ET_FP) + { + if(!TrReadFloat(tr, -HUGE_VAL, HUGE_VAL, out)) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + } + else + { + int v; + if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v)) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + *out = v / (double)((1<<(bits-1))-1); + } + return 1; +} + +// Read the RIFF/RIFX WAVE format chunk from a file, validating it against +// the source parameters and data set metrics. +static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src) +{ + uint32 fourCC, chunkSize; + uint32 format, channels, rate, dummy, block, size, bits; + + chunkSize = 0; + do { + if(chunkSize > 0) + fseek (fp, (long) chunkSize, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + } while(fourCC != FOURCC_FMT); + if(!ReadBin4(fp, src->mPath, order, 2, &format) || + !ReadBin4(fp, src->mPath, order, 2, &channels) || + !ReadBin4(fp, src->mPath, order, 4, &rate) || + !ReadBin4(fp, src->mPath, order, 4, &dummy) || + !ReadBin4(fp, src->mPath, order, 2, &block)) + return 0; + block /= channels; + if(chunkSize > 14) + { + if(!ReadBin4(fp, src->mPath, order, 2, &size)) + return 0; + size /= 8; + if(block > size) + size = block; + } + else + size = block; + if(format == WAVE_FORMAT_EXTENSIBLE) + { + fseek(fp, 2, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, order, 2, &bits)) + return 0; + if(bits == 0) + bits = 8 * size; + fseek(fp, 4, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, order, 2, &format)) + return 0; + fseek(fp, (long)(chunkSize - 26), SEEK_CUR); + } + else + { + bits = 8 * size; + if(chunkSize > 14) + fseek(fp, (long)(chunkSize - 16), SEEK_CUR); + else + fseek(fp, (long)(chunkSize - 14), SEEK_CUR); + } + if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT) + { + fprintf(stderr, "Error: Unsupported WAVE format in file '%s'.\n", src->mPath); + return 0; + } + if(src->mChannel >= channels) + { + fprintf(stderr, "Error: Missing source channel in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(rate != hrirRate) + { + fprintf(stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(format == WAVE_FORMAT_PCM) + { + if(size < 2 || size > 4) + { + fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(bits < 16 || bits > (8*size)) + { + fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src->mPath); + return 0; + } + src->mType = ET_INT; + } + else + { + if(size != 4 && size != 8) + { + fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); + return 0; + } + src->mType = ET_FP; + } + src->mSize = size; + src->mBits = (int)bits; + src->mSkip = channels; + return 1; +} + +// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. +static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + int pre, post, skip; + uint i; + + pre = (int)(src->mSize * src->mChannel); + post = (int)(src->mSize * (src->mSkip - src->mChannel - 1)); + skip = 0; + for(i = 0;i < n;i++) + { + skip += pre; + if(skip > 0) + fseek(fp, skip, SEEK_CUR); + if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) + return 0; + skip = post; + } + if(skip > 0) + fseek(fp, skip, SEEK_CUR); + return 1; +} + +// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to +// doubles. +static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + uint32 fourCC, chunkSize, listSize, count; + uint block, skip, offset, i; + double lastSample; + + for(;;) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + + if(fourCC == FOURCC_DATA) + { + block = src->mSize * src->mSkip; + count = chunkSize / block; + if(count < (src->mOffset + n)) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); + return 0; + } + fseek(fp, (long)(src->mOffset * block), SEEK_CUR); + if(!ReadWaveData(fp, src, order, n, &hrir[0])) + return 0; + return 1; + } + else if(fourCC == FOURCC_LIST) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) + return 0; + chunkSize -= 4; + if(fourCC == FOURCC_WAVL) + break; + } + if(chunkSize > 0) + fseek(fp, (long)chunkSize, SEEK_CUR); + } + listSize = chunkSize; + block = src->mSize * src->mSkip; + skip = src->mOffset; + offset = 0; + lastSample = 0.0; + while(offset < n && listSize > 8) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + listSize -= 8 + chunkSize; + if(fourCC == FOURCC_DATA) + { + count = chunkSize / block; + if(count > skip) + { + fseek(fp, (long)(skip * block), SEEK_CUR); + chunkSize -= skip * block; + count -= skip; + skip = 0; + if(count > (n - offset)) + count = n - offset; + if(!ReadWaveData(fp, src, order, count, &hrir[offset])) + return 0; + chunkSize -= count * block; + offset += count; + lastSample = hrir [offset - 1]; + } + else + { + skip -= count; + count = 0; + } + } + else if(fourCC == FOURCC_SLNT) + { + if(!ReadBin4(fp, src->mPath, order, 4, &count)) + return 0; + chunkSize -= 4; + if(count > skip) + { + count -= skip; + skip = 0; + if(count > (n - offset)) + count = n - offset; + for(i = 0; i < count; i ++) + hrir[offset + i] = lastSample; + offset += count; + } + else + { + skip -= count; + count = 0; + } + } + if(chunkSize > 0) + fseek(fp, (long)chunkSize, SEEK_CUR); + } + if(offset < n) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); + return 0; + } + return 1; +} + +// Load a source HRIR from a RIFF/RIFX WAVE file. +static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir) +{ + uint32 fourCC, dummy; + ByteOrderT order; + + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy)) + return 0; + if(fourCC == FOURCC_RIFF) + order = BO_LITTLE; + else if(fourCC == FOURCC_RIFX) + order = BO_BIG; + else + { + fprintf(stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src->mPath); + return 0; + } + + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) + return 0; + if(fourCC != FOURCC_WAVE) + { + fprintf(stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath); + return 0; + } + if(!ReadWaveFormat(fp, order, hrirRate, src)) + return 0; + if(!ReadWaveList(fp, src, order, n, hrir)) + return 0; + return 1; +} + +// Load a source HRIR from a binary file. +static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + uint i; + + fseek(fp, (long)src->mOffset, SEEK_SET); + for(i = 0;i < n;i++) + { + if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) + return 0; + if(src->mSkip > 0) + fseek(fp, (long)src->mSkip, SEEK_CUR); + } + return 1; +} + +// Load a source HRIR from an ASCII text file containing a list of elements +// separated by whitespace or common list operators (',', ';', ':', '|'). +static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir) +{ + TokenReaderT tr; + uint i, j; + double dummy; + + TrSetup(fp, NULL, &tr); + for(i = 0;i < src->mOffset;i++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) + return 0; + } + for(i = 0;i < n;i++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &hrir[i])) + return 0; + for(j = 0;j < src->mSkip;j++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) + return 0; + } + } + return 1; +} + +// Load a source HRIR from a supported file type. +static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) +{ + int result; + FILE *fp; + + if(src->mFormat == SF_ASCII) + fp = fopen(src->mPath, "r"); + else + fp = fopen(src->mPath, "rb"); + if(fp == NULL) + { + fprintf(stderr, "Error: Could not open source file '%s'.\n", src->mPath); + return 0; + } + if(src->mFormat == SF_WAVE) + result = LoadWaveSource(fp, src, hrirRate, n, hrir); + else if(src->mFormat == SF_BIN_LE) + result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir); + else if(src->mFormat == SF_BIN_BE) + result = LoadBinarySource(fp, src, BO_BIG, n, hrir); + else + result = LoadAsciiSource(fp, src, n, hrir); + fclose(fp); + return result; +} + + +/*************************** + *** File storage output *** + ***************************/ + +// Write an ASCII string to a file. +static int WriteAscii(const char *out, FILE *fp, const char *filename) +{ + size_t len; + + len = strlen(out); + if(fwrite(out, 1, len, fp) != len) + { + fclose(fp); + fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); + return 0; + } + return 1; +} + +// Write a binary value of the given byte order and byte size to a file, +// loading it from a 32-bit unsigned integer. +static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32 in, FILE *fp, const char *filename) +{ + uint8 out[4]; + uint i; + + switch(order) + { + case BO_LITTLE: + for(i = 0;i < bytes;i++) + out[i] = (in>>(i*8)) & 0x000000FF; + break; + case BO_BIG: + for(i = 0;i < bytes;i++) + out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF; + break; + default: + break; + } + if(fwrite(out, 1, bytes, fp) != bytes) + { + fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); + return 0; + } + return 1; +} + +// Store the OpenAL Soft HRTF data set. +static int StoreMhr(const HrirDataT *hData, const char *filename) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + FILE *fp; + uint fi, ei, ai, i; + uint dither_seed = 22222; + + if((fp=fopen(filename, "wb")) == NULL) + { + fprintf(stderr, "Error: Could not open MHR file '%s'.\n", filename); + return 0; + } + if(!WriteAscii(MHR_FORMAT, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 4, (uint32)hData->mIrRate, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mSampleType, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mChannelType, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mIrPoints, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFdCount, fp, filename)) + return 0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + if(!WriteBin4(BO_LITTLE, 2, (uint32)(1000.0 * hData->mFds[fi].mDistance), fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvCount, fp, filename)) + return 0; + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvs[ei].mAzCount, fp, filename)) + return 0; + } + } + + for(fi = 0;fi < hData->mFdCount;fi++) + { + const double scale = (hData->mSampleType == ST_S16) ? 32767.0 : + ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0); + const int bps = (hData->mSampleType == ST_S16) ? 2 : + ((hData->mSampleType == ST_S24) ? 3 : 0); + + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + double out[2 * MAX_TRUNCSIZE]; + + TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed); + if(hData->mChannelType == CT_STEREO) + TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed); + for(i = 0;i < (channels * n);i++) + { + int v = (int)Clamp(out[i], -scale-1.0, scale); + if(!WriteBin4(BO_LITTLE, bps, (uint32)v, fp, filename)) + return 0; + } + } + } + } + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + int v = (int)fmin(round(hData->mIrRate * azd->mDelays[0]), MAX_HRTD); + + if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename)) + return 0; + if(hData->mChannelType == CT_STEREO) + { + v = (int)fmin(round(hData->mIrRate * azd->mDelays[1]), MAX_HRTD); + + if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename)) + return 0; + } + } + } + } + fclose(fp); + return 1; +} + + +/*********************** + *** HRTF processing *** + ***********************/ + +// Calculate the onset time of an HRIR and average it with any existing +// timing for its field, elevation, azimuth, and ear. +static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset) +{ + double mag = 0.0; + uint i; + + for(i = 0;i < n;i++) + mag = fmax(fabs(hrir[i]), mag); + mag *= 0.15; + for(i = 0;i < n;i++) + { + if(fabs(hrir[i]) >= mag) + break; + } + return Lerp(onset, (double)i / rate, f); +} + +// Calculate the magnitude response of an HRIR and average it with any +// existing responses for its field, elevation, azimuth, and ear. +static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag) +{ + uint m = 1 + (n / 2), i; + Complex *h = CreateComplexes(n); + double *r = CreateDoubles(n); + + for(i = 0;i < points;i++) + h[i] = MakeComplex(hrir[i], 0.0); + for(;i < n;i++) + h[i] = MakeComplex(0.0, 0.0); + FftForward(n, h); + MagnitudeResponse(n, h, r); + for(i = 0;i < m;i++) + mag[i] = Lerp(mag[i], r[i], f); + free(r); + free(h); +} + +/* Calculate the contribution of each HRIR to the diffuse-field average based + * on the area of its surface patch. All patches are centered at the HRIR + * coordinates on the unit sphere and are measured by solid angle. + */ +static void CalculateDfWeights(const HrirDataT *hData, double *weights) +{ + double sum, evs, ev, upperEv, lowerEv, solidAngle; + uint fi, ei; + + sum = 0.0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1); + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + // For each elevation, calculate the upper and lower limits of + // the patch band. + ev = hData->mFds[fi].mEvs[ei].mElevation; + lowerEv = fmax(-M_PI / 2.0, ev - evs); + upperEv = fmin(M_PI / 2.0, ev + evs); + // Calculate the area of the patch band. + solidAngle = 2.0 * M_PI * (sin(upperEv) - sin(lowerEv)); + // Each weight is the area of one patch. + weights[(fi * MAX_EV_COUNT) + ei] = solidAngle / hData->mFds[fi].mEvs[ei].mAzCount; + // Sum the total surface area covered by the HRIRs of all fields. + sum += solidAngle; + } + } + /* TODO: It may be interesting to experiment with how a volume-based + weighting performs compared to the existing distance-indepenent + surface patches. + */ + for(fi = 0;fi < hData->mFdCount;fi++) + { + // Normalize the weights given the total surface coverage for all + // fields. + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + weights[(fi * MAX_EV_COUNT) + ei] /= sum; + } +} + +/* Calculate the diffuse-field average from the given magnitude responses of + * the HRIR set. Weighting can be applied to compensate for the varying + * surface area covered by each HRIR. The final average can then be limited + * by the specified magnitude range (in positive dB; 0.0 to skip). + */ +static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa) +{ + double *weights = CreateDoubles(hData->mFdCount * MAX_EV_COUNT); + uint count, ti, fi, ei, i, ai; + + if(weighted) + { + // Use coverage weighting to calculate the average. + CalculateDfWeights(hData, weights); + } + else + { + double weight; + + // If coverage weighting is not used, the weights still need to be + // averaged by the number of existing HRIRs. + count = hData->mIrCount; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) + count -= hData->mFds[fi].mEvs[ei].mAzCount; + } + weight = 1.0 / count; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + weights[(fi * MAX_EV_COUNT) + ei] = weight; + } + } + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + dfa[(ti * m) + i] = 0.0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + // Get the weight for this HRIR's contribution. + double weight = weights[(fi * MAX_EV_COUNT) + ei]; + + // Add this HRIR's weighted power average to the total. + for(i = 0;i < m;i++) + dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i]; + } + } + } + // Finish the average calculation and keep it from being too small. + for(i = 0;i < m;i++) + dfa[(ti * m) + i] = fmax(sqrt(dfa[(ti * m) + i]), EPSILON); + // Apply a limit to the magnitude range of the diffuse-field average + // if desired. + if(limit > 0.0) + LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]); + } + free(weights); +} + +// Perform diffuse-field equalization on the magnitude responses of the HRIR +// set using the given average response. +static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData) +{ + uint ti, fi, ei, ai, i; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + azd->mIrs[ti][i] /= dfa[(ti * m) + i]; + } + } + } + } +} + +// Perform minimum-phase reconstruction using the magnitude responses of the +// HRIR set. +static void ReconstructHrirs(const HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mFftSize; + uint ti, fi, ei, ai, i; + Complex *h = CreateComplexes(n); + uint total, count, pcdone, lastpc; + + total = hData->mIrCount; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) + total -= hData->mFds[fi].mEvs[ei].mAzCount; + } + total *= channels; + count = pcdone = lastpc = 0; + printf("%3d%% done.", pcdone); + fflush(stdout); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + MinimumPhase(n, azd->mIrs[ti], h); + FftInverse(n, h); + for(i = 0;i < hData->mIrPoints;i++) + azd->mIrs[ti][i] = h[i].Real; + pcdone = ++count * 100 / total; + if(pcdone != lastpc) + { + lastpc = pcdone; + printf("\r%3d%% done.", pcdone); + fflush(stdout); + } + } + } + } + } + printf("\n"); + free(h); +} + +// Resamples the HRIRs for use at the given sampling rate. +static void ResampleHrirs(const uint rate, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + uint ti, fi, ei, ai; + ResamplerT rs; + + ResamplerSetup(&rs, hData->mIrRate, rate); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]); + } + } + } + hData->mIrRate = rate; + ResamplerClear(&rs); +} + +/* Given field and elevation indices and an azimuth, calculate the indices of + * the two HRIRs that bound the coordinate along with a factor for + * calculating the continuous HRIR using interpolation. + */ +static void CalcAzIndices(const HrirDataT *hData, const uint fi, const uint ei, const double az, uint *a0, uint *a1, double *af) +{ + double f = (2.0*M_PI + az) * hData->mFds[fi].mEvs[ei].mAzCount / (2.0*M_PI); + uint i = (uint)f % hData->mFds[fi].mEvs[ei].mAzCount; + + f -= floor(f); + *a0 = i; + *a1 = (i + 1) % hData->mFds[fi].mEvs[ei].mAzCount; + *af = f; +} + +// Synthesize any missing onset timings at the bottom elevations of each +// field. This just blends between slightly exaggerated known onsets (not +// an accurate model). +static void SynthesizeOnsets(HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint ti, fi, oi, ai, ei, a0, a1; + double t, of, af; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + if(hData->mFds[fi].mEvStart <= 0) + continue; + oi = hData->mFds[fi].mEvStart; + + for(ti = 0;ti < channels;ti++) + { + t = 0.0; + for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++) + t += hData->mFds[fi].mEvs[oi].mAzs[ai].mDelays[ti]; + hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti] = 1.32e-4 + (t / hData->mFds[fi].mEvs[oi].mAzCount); + for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++) + { + of = (double)ei / hData->mFds[fi].mEvStart; + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af); + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] = Lerp( + hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti], + Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mDelays[ti], + hData->mFds[fi].mEvs[oi].mAzs[a1].mDelays[ti], af), + of + ); + } + } + } + } +} + +/* Attempt to synthesize any missing HRIRs at the bottom elevations of each + * field. Right now this just blends the lowest elevation HRIRs together and + * applies some attenuation and high frequency damping. It is a simple, if + * inaccurate model. + */ +static void SynthesizeHrirs(HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + uint ti, fi, ai, ei, i; + double lp[4], s0, s1; + double of, b; + uint a0, a1; + double af; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + const uint oi = hData->mFds[fi].mEvStart; + if(oi <= 0) continue; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < n;i++) + hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = 0.0; + for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++) + { + for(i = 0;i < n;i++) + hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] += hData->mFds[fi].mEvs[oi].mAzs[ai].mIrs[ti][i] / + hData->mFds[fi].mEvs[oi].mAzCount; + } + for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++) + { + of = (double)ei / hData->mFds[fi].mEvStart; + b = (1.0 - of) * (3.5e-6 * hData->mIrRate); + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af); + lp[0] = 0.0; + lp[1] = 0.0; + lp[2] = 0.0; + lp[3] = 0.0; + for(i = 0;i < n;i++) + { + s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i]; + s1 = Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mIrs[ti][i], + hData->mFds[fi].mEvs[oi].mAzs[a1].mIrs[ti][i], af); + s0 = Lerp(s0, s1, of); + lp[0] = Lerp(s0, lp[0], b); + lp[1] = Lerp(lp[0], lp[1], b); + lp[2] = Lerp(lp[1], lp[2], b); + lp[3] = Lerp(lp[2], lp[3], b); + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3]; + } + } + } + b = 3.5e-6 * hData->mIrRate; + lp[0] = 0.0; + lp[1] = 0.0; + lp[2] = 0.0; + lp[3] = 0.0; + for(i = 0;i < n;i++) + { + s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i]; + lp[0] = Lerp(s0, lp[0], b); + lp[1] = Lerp(lp[0], lp[1], b); + lp[2] = Lerp(lp[1], lp[2], b); + lp[3] = Lerp(lp[2], lp[3], b); + hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = lp[3]; + } + } + hData->mFds[fi].mEvStart = 0; + } +} + +// The following routines assume a full set of HRIRs for all elevations. + +// Normalize the HRIR set and slightly attenuate the result. +static void NormalizeHrirs(const HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + uint ti, fi, ei, ai, i; + double maxLevel = 0.0; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < n;i++) + maxLevel = fmax(fabs(azd->mIrs[ti][i]), maxLevel); + } + } + } + } + maxLevel = 1.01 * maxLevel; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < n;i++) + azd->mIrs[ti][i] /= maxLevel; + } + } + } + } +} + +// Calculate the left-ear time delay using a spherical head model. +static double CalcLTD(const double ev, const double az, const double rad, const double dist) +{ + double azp, dlp, l, al; + + azp = asin(cos(ev) * sin(az)); + dlp = sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp))); + l = sqrt((dist*dist) - (rad*rad)); + al = (0.5 * M_PI) + azp; + if(dlp > l) + dlp = l + (rad * (al - acos(rad / dist))); + return dlp / 343.3; +} + +// Calculate the effective head-related time delays for each minimum-phase +// HRIR. +static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + double minHrtd = INFINITY, maxHrtd = -INFINITY; + uint ti, fi, ei, ai; + double t; + + if(model == HM_DATASET) + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + t = azd->mDelays[ti] * radius / hData->mRadius; + azd->mDelays[ti] = t; + maxHrtd = fmax(t, maxHrtd); + minHrtd = fmin(t, minHrtd); + } + } + } + } + } + else + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + HrirEvT *evd = &hData->mFds[fi].mEvs[ei]; + + for(ai = 0;ai < evd->mAzCount;ai++) + { + HrirAzT *azd = &evd->mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + t = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance); + azd->mDelays[ti] = t; + maxHrtd = fmax(t, maxHrtd); + minHrtd = fmin(t, minHrtd); + } + } + } + } + } + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ti = 0;ti < channels;ti++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd; + } + } + } +} + +// Clear the initial HRIR data state. +static void ResetHrirData(HrirDataT *hData) +{ + hData->mIrRate = 0; + hData->mSampleType = ST_S24; + hData->mChannelType = CT_NONE; + hData->mIrPoints = 0; + hData->mFftSize = 0; + hData->mIrSize = 0; + hData->mRadius = 0.0; + hData->mIrCount = 0; + hData->mFdCount = 0; + hData->mFds = NULL; +} + +// Allocate and configure dynamic HRIR structures. +static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData) +{ + uint evTotal = 0, azTotal = 0, fi, ei, ai; + + for(fi = 0;fi < fdCount;fi++) + { + evTotal += evCounts[fi]; + for(ei = 0;ei < evCounts[fi];ei++) + azTotal += azCounts[(fi * MAX_EV_COUNT) + ei]; + } + if(!fdCount || !evTotal || !azTotal) + return 0; + + hData->mFds = static_cast<HrirFdT*>(calloc(fdCount, sizeof(*hData->mFds))); + if(hData->mFds == NULL) + return 0; + hData->mFds[0].mEvs = static_cast<HrirEvT*>(calloc(evTotal, sizeof(*hData->mFds[0].mEvs))); + if(hData->mFds[0].mEvs == NULL) + return 0; + hData->mFds[0].mEvs[0].mAzs = static_cast<HrirAzT*>(calloc(azTotal, sizeof(*hData->mFds[0].mEvs[0].mAzs))); + if(hData->mFds[0].mEvs[0].mAzs == NULL) + return 0; + hData->mIrCount = azTotal; + hData->mFdCount = fdCount; + evTotal = 0; + azTotal = 0; + for(fi = 0;fi < fdCount;fi++) + { + hData->mFds[fi].mDistance = distances[fi]; + hData->mFds[fi].mEvCount = evCounts[fi]; + hData->mFds[fi].mEvStart = 0; + hData->mFds[fi].mEvs = &hData->mFds[0].mEvs[evTotal]; + evTotal += evCounts[fi]; + for(ei = 0;ei < evCounts[fi];ei++) + { + uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei]; + + hData->mFds[fi].mIrCount += azCount; + hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1); + hData->mFds[fi].mEvs[ei].mIrCount += azCount; + hData->mFds[fi].mEvs[ei].mAzCount = azCount; + hData->mFds[fi].mEvs[ei].mAzs = &hData->mFds[0].mEvs[0].mAzs[azTotal]; + for(ai = 0;ai < azCount;ai++) + { + hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai; + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0; + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = NULL; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = NULL; + } + azTotal += azCount; + } + } + return 1; +} + +// Clean up HRIR data. +static void FreeHrirData(HrirDataT *hData) +{ + if(hData->mFds != NULL) + { + if(hData->mFds[0].mEvs != NULL) + { + if(hData->mFds[0].mEvs[0].mAzs) + { + free(hData->mFds[0].mEvs[0].mAzs[0].mIrs[0]); + free(hData->mFds[0].mEvs[0].mAzs); + } + free(hData->mFds[0].mEvs); + } + free(hData->mFds); + hData->mFds = NULL; + } +} + +// Match the channel type from a given identifier. +static ChannelTypeT MatchChannelType(const char *ident) +{ + if(strcasecmp(ident, "mono") == 0) + return CT_MONO; + if(strcasecmp(ident, "stereo") == 0) + return CT_STEREO; + return CT_NONE; +} + +// Process the data set definition to read and validate the data set metrics. +static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData) +{ + int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0; + int hasDistance = 0, hasAzimuths = 0; + char ident[MAX_IDENT_LEN+1]; + uint line, col; + double fpVal; + uint points; + int intVal; + double distances[MAX_FD_COUNT]; + uint fdCount = 0; + uint evCounts[MAX_FD_COUNT]; + uint *azCounts = static_cast<uint*>(calloc(MAX_FD_COUNT * MAX_EV_COUNT, sizeof(*azCounts))); + + if(azCounts == NULL) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + TrIndication(tr, &line, &col); + while(TrIsIdent(tr)) + { + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + goto error; + if(strcasecmp(ident, "rate") == 0) + { + if(hasRate) + { + TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal)) + goto error; + hData->mIrRate = (uint)intVal; + hasRate = 1; + } + else if(strcasecmp(ident, "type") == 0) + { + char type[MAX_IDENT_LEN+1]; + + if(hasType) + { + TrErrorAt(tr, line, col, "Redefinition of 'type'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) + goto error; + hData->mChannelType = MatchChannelType(type); + if(hData->mChannelType == CT_NONE) + { + TrErrorAt(tr, line, col, "Expected a channel type.\n"); + goto error; + } + hasType = 1; + } + else if(strcasecmp(ident, "points") == 0) + { + if(hasPoints) + { + TrErrorAt(tr, line, col, "Redefinition of 'points'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal)) + goto error; + points = (uint)intVal; + if(fftSize > 0 && points > fftSize) + { + TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n"); + goto error; + } + if(points < truncSize) + { + TrErrorAt(tr, line, col, "Value is below the truncation size.\n"); + goto error; + } + hData->mIrPoints = points; + if(fftSize <= 0) + { + hData->mFftSize = DEFAULT_FFTSIZE; + hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2); + } + else + { + hData->mFftSize = fftSize; + hData->mIrSize = 1 + (fftSize / 2); + if(points > hData->mIrSize) + hData->mIrSize = points; + } + hasPoints = 1; + } + else if(strcasecmp(ident, "radius") == 0) + { + if(hasRadius) + { + TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal)) + goto error; + hData->mRadius = fpVal; + hasRadius = 1; + } + else if(strcasecmp(ident, "distance") == 0) + { + uint count = 0; + + if(hasDistance) + { + TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + for(;;) + { + if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) + goto error; + if(count > 0 && fpVal <= distances[count - 1]) + { + TrError(tr, "Distances are not ascending.\n"); + goto error; + } + distances[count++] = fpVal; + if(!TrIsOperator(tr, ",")) + break; + if(count >= MAX_FD_COUNT) + { + TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT); + goto error; + } + TrReadOperator(tr, ","); + } + if(fdCount != 0 && count != fdCount) + { + TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); + goto error; + } + fdCount = count; + hasDistance = 1; + } + else if(strcasecmp(ident, "azimuths") == 0) + { + uint count = 0; + + if(hasAzimuths) + { + TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + evCounts[0] = 0; + for(;;) + { + if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal)) + goto error; + azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = (uint)intVal; + if(TrIsOperator(tr, ",")) + { + if(evCounts[count] >= MAX_EV_COUNT) + { + TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); + goto error; + } + TrReadOperator(tr, ","); + } + else + { + if(evCounts[count] < MIN_EV_COUNT) + { + TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); + goto error; + } + if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1) + { + TrError(tr, "Poles are not singular for field %d.\n", count - 1); + goto error; + } + count++; + if(TrIsOperator(tr, ";")) + { + if(count >= MAX_FD_COUNT) + { + TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT); + goto error; + } + evCounts[count] = 0; + TrReadOperator(tr, ";"); + } + else + { + break; + } + } + } + if(fdCount != 0 && count != fdCount) + { + TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); + goto error; + } + fdCount = count; + hasAzimuths = 1; + } + else + { + TrErrorAt(tr, line, col, "Expected a metric name.\n"); + goto error; + } + TrSkipWhitespace(tr); + } + if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths)) + { + TrErrorAt(tr, line, col, "Expected a metric name.\n"); + goto error; + } + if(distances[0] < hData->mRadius) + { + TrError(tr, "Distance cannot start below head radius.\n"); + goto error; + } + if(hData->mChannelType == CT_NONE) + hData->mChannelType = CT_MONO; + if(!PrepareHrirData(fdCount, distances, evCounts, azCounts, hData)) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + free(azCounts); + return 1; + +error: + free(azCounts); + return 0; +} + +// Parse an index triplet from the data set definition. +static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai) +{ + int intVal; + + if(hData->mFdCount > 1) + { + if(!TrReadInt(tr, 0, (int)hData->mFdCount - 1, &intVal)) + return 0; + *fi = (uint)intVal; + if(!TrReadOperator(tr, ",")) + return 0; + } + else + { + *fi = 0; + } + if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvCount - 1, &intVal)) + return 0; + *ei = (uint)intVal; + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvs[*ei].mAzCount - 1, &intVal)) + return 0; + *ai = (uint)intVal; + return 1; +} + +// Match the source format from a given identifier. +static SourceFormatT MatchSourceFormat(const char *ident) +{ + if(strcasecmp(ident, "wave") == 0) + return SF_WAVE; + if(strcasecmp(ident, "bin_le") == 0) + return SF_BIN_LE; + if(strcasecmp(ident, "bin_be") == 0) + return SF_BIN_BE; + if(strcasecmp(ident, "ascii") == 0) + return SF_ASCII; + return SF_NONE; +} + +// Match the source element type from a given identifier. +static ElementTypeT MatchElementType(const char *ident) +{ + if(strcasecmp(ident, "int") == 0) + return ET_INT; + if(strcasecmp(ident, "fp") == 0) + return ET_FP; + return ET_NONE; +} + +// Parse and validate a source reference from the data set definition. +static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src) +{ + char ident[MAX_IDENT_LEN+1]; + uint line, col; + int intVal; + + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + src->mFormat = MatchSourceFormat(ident); + if(src->mFormat == SF_NONE) + { + TrErrorAt(tr, line, col, "Expected a source format.\n"); + return 0; + } + if(!TrReadOperator(tr, "(")) + return 0; + if(src->mFormat == SF_WAVE) + { + if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) + return 0; + src->mType = ET_NONE; + src->mSize = 0; + src->mBits = 0; + src->mChannel = (uint)intVal; + src->mSkip = 0; + } + else + { + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + src->mType = MatchElementType(ident); + if(src->mType == ET_NONE) + { + TrErrorAt(tr, line, col, "Expected a source element type.\n"); + return 0; + } + if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE) + { + if(!TrReadOperator(tr, ",")) + return 0; + if(src->mType == ET_INT) + { + if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal)) + return 0; + src->mSize = (uint)intVal; + if(!TrIsOperator(tr, ",")) + src->mBits = (int)(8*src->mSize); + else + { + TrReadOperator(tr, ","); + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) + return 0; + if(abs(intVal) < MIN_BIN_BITS || (uint)abs(intVal) > (8*src->mSize)) + { + TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize); + return 0; + } + src->mBits = intVal; + } + } + else + { + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) + return 0; + if(intVal != 4 && intVal != 8) + { + TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n"); + return 0; + } + src->mSize = (uint)intVal; + src->mBits = 0; + } + } + else if(src->mFormat == SF_ASCII && src->mType == ET_INT) + { + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal)) + return 0; + src->mSize = 0; + src->mBits = intVal; + } + else + { + src->mSize = 0; + src->mBits = 0; + } + + if(!TrIsOperator(tr, ";")) + src->mSkip = 0; + else + { + TrReadOperator(tr, ";"); + if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) + return 0; + src->mSkip = (uint)intVal; + } + } + if(!TrReadOperator(tr, ")")) + return 0; + if(TrIsOperator(tr, "@")) + { + TrReadOperator(tr, "@"); + if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) + return 0; + src->mOffset = (uint)intVal; + } + else + src->mOffset = 0; + if(!TrReadOperator(tr, ":")) + return 0; + if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) + return 0; + return 1; +} + +// Match the target ear (index) from a given identifier. +static int MatchTargetEar(const char *ident) +{ + if(strcasecmp(ident, "left") == 0) + return 0; + if(strcasecmp(ident, "right") == 0) + return 1; + return -1; +} + +// Process the list of sources in the data set definition. +static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + double *hrirs = CreateDoubles(channels * hData->mIrCount * hData->mIrSize); + double *hrir = CreateDoubles(hData->mIrPoints); + uint line, col, fi, ei, ai, ti; + int count; + + printf("Loading sources..."); + fflush(stdout); + count = 0; + while(TrIsOperator(tr, "[")) + { + double factor[2] = { 1.0, 1.0 }; + + TrIndication(tr, &line, &col); + TrReadOperator(tr, "["); + if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai)) + goto error; + if(!TrReadOperator(tr, "]")) + goto error; + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] != NULL) + { + TrErrorAt(tr, line, col, "Redefinition of source.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + for(;;) + { + SourceRefT src; + uint ti = 0; + + if(!ReadSourceRef(tr, &src)) + goto error; + + // TODO: Would be nice to display 'x of y files', but that would + // require preparing the source refs first to get a total count + // before loading them. + ++count; + printf("\rLoading sources... %d file%s", count, (count==1)?"":"s"); + fflush(stdout); + + if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir)) + goto error; + + if(hData->mChannelType == CT_STEREO) + { + char ident[MAX_IDENT_LEN+1]; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + goto error; + ti = MatchTargetEar(ident); + if((int)ti < 0) + { + TrErrorAt(tr, line, col, "Expected a target ear.\n"); + goto error; + } + } + azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; + if(model == HM_DATASET) + azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir, 1.0 / factor[ti], azd->mDelays[ti]); + AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir, 1.0 / factor[ti], azd->mIrs[ti]); + factor[ti] += 1.0; + if(!TrIsOperator(tr, "+")) + break; + TrReadOperator(tr, "+"); + } + if(hData->mChannelType == CT_STEREO) + { + if(azd->mIrs[0] == NULL) + { + TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n"); + goto error; + } + else if(azd->mIrs[1] == NULL) + { + TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n"); + goto error; + } + } + } + printf("\n"); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] != NULL) + break; + } + if(ai < hData->mFds[fi].mEvs[ei].mAzCount) + break; + } + if(ei >= hData->mFds[fi].mEvCount) + { + TrError(tr, "Missing source references [ %d, *, * ].\n", fi); + goto error; + } + hData->mFds[fi].mEvStart = ei; + for(;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] == NULL) + { + TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai); + goto error; + } + } + } + } + for(ti = 0;ti < channels;ti++) + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; + } + } + } + } + if(!TrLoad(tr)) + { + free(hrir); + return 1; + } + TrError(tr, "Errant data at end of source list.\n"); + +error: + free(hrir); + return 0; +} + +/* Parse the data set definition and process the source data, storing the + * resulting data set as desired. If the input name is NULL it will read + * from standard input. + */ +static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName) +{ + char rateStr[8+1], expName[MAX_PATH_LEN]; + TokenReaderT tr; + HrirDataT hData; + FILE *fp; + int ret; + + ResetHrirData(&hData); + fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin"); + if(inName != NULL) + { + fp = fopen(inName, "r"); + if(fp == NULL) + { + fprintf(stderr, "Error: Could not open definition file '%s'\n", inName); + return 0; + } + TrSetup(fp, inName, &tr); + } + else + { + fp = stdin; + TrSetup(fp, "<stdin>", &tr); + } + if(!ProcessMetrics(&tr, fftSize, truncSize, &hData)) + { + if(inName != NULL) + fclose(fp); + return 0; + } + if(!ProcessSources(model, &tr, &hData)) + { + FreeHrirData(&hData); + if(inName != NULL) + fclose(fp); + return 0; + } + if(fp != stdin) + fclose(fp); + if(equalize) + { + uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1; + uint m = 1 + hData.mFftSize / 2; + double *dfa = CreateDoubles(c * m); + + fprintf(stdout, "Calculating diffuse-field average...\n"); + CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa); + fprintf(stdout, "Performing diffuse-field equalization...\n"); + DiffuseFieldEqualize(c, m, dfa, &hData); + free(dfa); + } + fprintf(stdout, "Performing minimum phase reconstruction...\n"); + ReconstructHrirs(&hData); + if(outRate != 0 && outRate != hData.mIrRate) + { + fprintf(stdout, "Resampling HRIRs...\n"); + ResampleHrirs(outRate, &hData); + } + fprintf(stdout, "Truncating minimum-phase HRIRs...\n"); + hData.mIrPoints = truncSize; + fprintf(stdout, "Synthesizing missing elevations...\n"); + if(model == HM_DATASET) + SynthesizeOnsets(&hData); + SynthesizeHrirs(&hData); + fprintf(stdout, "Normalizing final HRIRs...\n"); + NormalizeHrirs(&hData); + fprintf(stdout, "Calculating impulse delays...\n"); + CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData); + snprintf(rateStr, 8, "%u", hData.mIrRate); + StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName); + fprintf(stdout, "Creating MHR data set %s...\n", expName); + ret = StoreMhr(&hData, expName); + + FreeHrirData(&hData); + return ret; +} + +static void PrintHelp(const char *argv0, FILE *ofile) +{ + fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0); + fprintf(ofile, "Options:\n"); + fprintf(ofile, " -m Ignored for compatibility.\n"); + fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n"); + fprintf(ofile, " resample the HRIRs accordingly.\n"); + fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE); + fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off")); + fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off")); + fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n"); + fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT); + fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n"); + fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE); + fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n"); + fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere")); + fprintf(ofile, " -c <size> Use a customized head radius measured ear-to-ear in meters.\n"); + fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n"); + fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n"); + fprintf(ofile, " the data set sample rate.\n"); +} + +// Standard command line dispatch. +int main(int argc, char *argv[]) +{ + const char *inName = NULL, *outName = NULL; + uint outRate, fftSize; + int equalize, surface; + char *end = NULL; + HeadModelT model; + uint truncSize; + double radius; + double limit; + int opt; + + GET_UNICODE_ARGS(&argc, &argv); + + if(argc < 2) + { + fprintf(stdout, "HRTF Processing and Composition Utility\n\n"); + PrintHelp(argv[0], stdout); + exit(EXIT_SUCCESS); + } + + outName = "./oalsoft_hrtf_%r.mhr"; + outRate = 0; + fftSize = 0; + equalize = DEFAULT_EQUALIZE; + surface = DEFAULT_SURFACE; + limit = DEFAULT_LIMIT; + truncSize = DEFAULT_TRUNCSIZE; + model = DEFAULT_HEAD_MODEL; + radius = DEFAULT_CUSTOM_RADIUS; + + while((opt=getopt(argc, argv, "mr:f:e:s:l:w:d:c:e:i:o:h")) != -1) + { + switch(opt) + { + case 'm': + fprintf(stderr, "Ignoring unused command '-m'.\n"); + break; + + case 'r': + outRate = strtoul(optarg, &end, 10); + if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE); + exit(EXIT_FAILURE); + } + break; + + case 'f': + fftSize = strtoul(optarg, &end, 10); + if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE); + exit(EXIT_FAILURE); + } + break; + + case 'e': + if(strcmp(optarg, "on") == 0) + equalize = 1; + else if(strcmp(optarg, "off") == 0) + equalize = 0; + else + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 's': + if(strcmp(optarg, "on") == 0) + surface = 1; + else if(strcmp(optarg, "off") == 0) + surface = 0; + else + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 'l': + if(strcmp(optarg, "none") == 0) + limit = 0.0; + else + { + limit = strtod(optarg, &end); + if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT); + exit(EXIT_FAILURE); + } + } + break; + + case 'w': + truncSize = strtoul(optarg, &end, 10); + if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE)) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE); + exit(EXIT_FAILURE); + } + break; + + case 'd': + if(strcmp(optarg, "dataset") == 0) + model = HM_DATASET; + else if(strcmp(optarg, "sphere") == 0) + model = HM_SPHERE; + else + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 'c': + radius = strtod(optarg, &end); + if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS); + exit(EXIT_FAILURE); + } + break; + + case 'i': + inName = optarg; + break; + + case 'o': + outName = optarg; + break; + + case 'h': + PrintHelp(argv[0], stdout); + exit(EXIT_SUCCESS); + + default: /* '?' */ + PrintHelp(argv[0], stderr); + exit(EXIT_FAILURE); + } + } + + if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit, + truncSize, model, radius, outName)) + return -1; + fprintf(stdout, "Operation completed.\n"); + + return EXIT_SUCCESS; +} |