diff options
Diffstat (limited to 'utils/makemhr/makemhr.cpp')
-rw-r--r-- | utils/makemhr/makemhr.cpp | 39 |
1 files changed, 19 insertions, 20 deletions
diff --git a/utils/makemhr/makemhr.cpp b/utils/makemhr/makemhr.cpp index 014b2967..2b6d04ce 100644 --- a/utils/makemhr/makemhr.cpp +++ b/utils/makemhr/makemhr.cpp @@ -91,6 +91,7 @@ #include "alcomplex.h" #include "alfstream.h" #include "alnumbers.h" +#include "alnumeric.h" #include "alspan.h" #include "alstring.h" #include "loaddef.h" @@ -383,7 +384,7 @@ static int StoreMhr(const HrirDataT *hData, const char *filename) for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - std::array<double,2*MaxTruncSize> out{}; + std::array<double,MaxTruncSize*2_uz> out{}; TpdfDither(out.data(), azd->mIrs[0], scale, n, channels, &dither_seed); if(hData->mChannelType == CT_STEREO) @@ -532,7 +533,7 @@ static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint chan const int weighted, const double limit, double *dfa) { std::vector<double> weights(hData->mFds.size() * MAX_EV_COUNT); - uint count, ti, fi, ei, i, ai; + uint count; if(weighted) { @@ -546,41 +547,41 @@ static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint chan // If coverage weighting is not used, the weights still need to be // averaged by the number of existing HRIRs. count = hData->mIrCount; - for(fi = 0;fi < hData->mFds.size();fi++) + for(size_t fi{0};fi < hData->mFds.size();++fi) { - for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) + for(size_t ei{0};ei < hData->mFds[fi].mEvStart;++ei) count -= static_cast<uint>(hData->mFds[fi].mEvs[ei].mAzs.size()); } weight = 1.0 / count; - for(fi = 0;fi < hData->mFds.size();fi++) + for(size_t fi{0};fi < hData->mFds.size();++fi) { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvs.size();ei++) + for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei) weights[(fi * MAX_EV_COUNT) + ei] = weight; } } - for(ti = 0;ti < channels;ti++) + for(size_t ti{0};ti < channels;++ti) { - for(i = 0;i < m;i++) + for(size_t i{0};i < m;++i) dfa[(ti * m) + i] = 0.0; - for(fi = 0;fi < hData->mFds.size();fi++) + for(size_t fi{0};fi < hData->mFds.size();++fi) { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvs.size();ei++) + for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei) { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) + for(size_t ai{0};ai < hData->mFds[fi].mEvs[ei].mAzs.size();++ai) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; // Get the weight for this HRIR's contribution. double weight = weights[(fi * MAX_EV_COUNT) + ei]; // Add this HRIR's weighted power average to the total. - for(i = 0;i < m;i++) + for(size_t i{0};i < m;++i) dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i]; } } } // Finish the average calculation and keep it from being too small. - for(i = 0;i < m;i++) + for(size_t i{0};i < m;++i) dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), Epsilon); // Apply a limit to the magnitude range of the diffuse-field average // if desired. @@ -593,17 +594,15 @@ static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint chan // set using the given average response. static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData) { - uint ti, fi, ei, i; - - for(fi = 0;fi < hData->mFds.size();fi++) + for(size_t fi{0};fi < hData->mFds.size();++fi) { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvs.size();ei++) + for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei) { for(auto &azd : hData->mFds[fi].mEvs[ei].mAzs) { - for(ti = 0;ti < channels;ti++) + for(size_t ti{0};ti < channels;++ti) { - for(i = 0;i < m;i++) + for(size_t i{0};i < m;++i) azd.mIrs[ti][i] /= dfa[(ti * m) + i]; } } @@ -1224,7 +1223,7 @@ static int ProcessDefinition(const char *inName, const uint outRate, const Chann { uint c{(hData.mChannelType == CT_STEREO) ? 2u : 1u}; uint m{hData.mFftSize/2u + 1u}; - auto dfa = std::vector<double>(c * m); + auto dfa = std::vector<double>(size_t{c} * m); if(hData.mFds.size() > 1) { |