1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
#include "config.h"
#include <assert.h>
#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "defs.h"
static inline ALfloat do_point(const InterpState* UNUSED(state), const ALfloat *restrict vals, ALsizei UNUSED(frac))
{ return vals[0]; }
static inline ALfloat do_lerp(const InterpState* UNUSED(state), const ALfloat *restrict vals, ALsizei frac)
{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
static inline ALfloat do_cubic(const InterpState* UNUSED(state), const ALfloat *restrict vals, ALsizei frac)
{ return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
static inline ALfloat do_bsinc(const InterpState *state, const ALfloat *restrict vals, ALsizei frac)
{
const ALfloat *fil, *scd, *phd, *spd;
ALsizei j_f, pi;
ALfloat pf, r;
ASSUME(state->bsinc.m > 0);
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
fil = ASSUME_ALIGNED(state->bsinc.filter + state->bsinc.m*pi*4, 16);
scd = ASSUME_ALIGNED(fil + state->bsinc.m, 16);
phd = ASSUME_ALIGNED(scd + state->bsinc.m, 16);
spd = ASSUME_ALIGNED(phd + state->bsinc.m, 16);
// Apply the scale and phase interpolated filter.
r = 0.0f;
for(j_f = 0;j_f < state->bsinc.m;j_f++)
r += (fil[j_f] + state->bsinc.sf*scd[j_f] + pf*(phd[j_f] + state->bsinc.sf*spd[j_f])) * vals[j_f];
return r;
}
const ALfloat *Resample_copy_C(const InterpState* UNUSED(state),
const ALfloat *restrict src, ALsizei UNUSED(frac), ALint UNUSED(increment),
ALfloat *restrict dst, ALsizei numsamples)
{
#if defined(HAVE_SSE) || defined(HAVE_NEON)
/* Avoid copying the source data if it's aligned like the destination. */
if((((intptr_t)src)&15) == (((intptr_t)dst)&15))
return src;
#endif
memcpy(dst, src, numsamples*sizeof(ALfloat));
return dst;
}
#define DECL_TEMPLATE(Tag, Sampler, O) \
const ALfloat *Resample_##Tag##_C(const InterpState *state, \
const ALfloat *restrict src, ALsizei frac, ALint increment, \
ALfloat *restrict dst, ALsizei numsamples) \
{ \
const InterpState istate = *state; \
ALsizei i; \
\
ASSUME(numsamples > 0); \
\
src -= O; \
for(i = 0;i < numsamples;i++) \
{ \
dst[i] = Sampler(&istate, src, frac); \
\
frac += increment; \
src += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
} \
return dst; \
}
DECL_TEMPLATE(point, do_point, 0)
DECL_TEMPLATE(lerp, do_lerp, 0)
DECL_TEMPLATE(cubic, do_cubic, 1)
DECL_TEMPLATE(bsinc, do_bsinc, istate.bsinc.l)
#undef DECL_TEMPLATE
static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
const ALsizei IrSize,
const ALfloat (*restrict Coeffs)[2],
ALfloat left, ALfloat right)
{
ALsizei c;
for(c = 0;c < IrSize;c++)
{
const ALsizei off = (Offset+c)&HRIR_MASK;
Values[off][0] += Coeffs[c][0] * left;
Values[off][1] += Coeffs[c][1] * right;
}
}
#define MixHrtf MixHrtf_C
#define MixHrtfBlend MixHrtfBlend_C
#define MixDirectHrtf MixDirectHrtf_C
#include "hrtf_inc.c"
void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
ALsizei BufferSize)
{
const ALfloat delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
ALsizei c;
ASSUME(OutChans > 0);
ASSUME(BufferSize > 0);
for(c = 0;c < OutChans;c++)
{
ALsizei pos = 0;
ALfloat gain = CurrentGains[c];
const ALfloat diff = TargetGains[c] - gain;
if(fabsf(diff) > FLT_EPSILON)
{
ALsizei minsize = mini(BufferSize, Counter);
const ALfloat step = diff * delta;
ALfloat step_count = 0.0f;
for(;pos < minsize;pos++)
{
OutBuffer[c][OutPos+pos] += data[pos] * (gain + step*step_count);
step_count += 1.0f;
}
if(pos == Counter)
gain = TargetGains[c];
else
gain += step*step_count;
CurrentGains[c] = gain;
}
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(;pos < BufferSize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
}
/* Basically the inverse of the above. Rather than one input going to multiple
* outputs (each with its own gain), it's multiple inputs (each with its own
* gain) going to one output. This applies one row (vs one column) of a matrix
* transform. And as the matrices are more or less static once set up, no
* stepping is necessary.
*/
void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
{
ALsizei c, i;
ASSUME(InChans > 0);
ASSUME(BufferSize > 0);
for(c = 0;c < InChans;c++)
{
const ALfloat gain = Gains[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < BufferSize;i++)
OutBuffer[i] += data[c][InPos+i] * gain;
}
}
|