1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
#include "config.h"
#include "nfcfilter.h"
#include "alu.h"
/* Near-field control filters are the basis for handling the near-field effect.
* The near-field effect is a bass-boost present in the directional components
* of a recorded signal, created as a result of the wavefront curvature (itself
* a function of sound distance). Proper reproduction dictates this be
* compensated for using a bass-cut given the playback speaker distance, to
* avoid excessive bass in the playback.
*
* For real-time rendered audio, emulating the near-field effect based on the
* sound source's distance, and subsequently compensating for it at output
* based on the speaker distances, can create a more realistic perception of
* sound distance beyond a simple 1/r attenuation.
*
* These filters do just that. Each one applies a low-shelf filter, created as
* the combination of a bass-boost for a given sound source distance (near-
* field emulation) along with a bass-cut for a given control/speaker distance
* (near-field compensation).
*
* Note that it is necessary to apply a cut along with the boost, since the
* boost alone is unstable in higher-order ambisonics as it causes an infinite
* DC gain (even first-order ambisonics requires there to be no DC offset for
* the boost to work). Consequently, ambisonics requires a control parameter to
* be used to avoid an unstable boost-only filter. NFC-HOA defines this control
* as a reference delay, calculated with:
*
* reference_delay = control_distance / speed_of_sound
*
* This means w0 (for input) or w1 (for output) should be set to:
*
* wN = 1 / (reference_delay * sample_rate)
*
* when dealing with NFC-HOA content. For FOA input content, which does not
* specify a reference_delay variable, w0 should be set to 0 to apply only
* near-field compensation for output. It's important that w1 be a finite,
* positive, non-0 value or else the bass-boost will become unstable again.
* Also, w0 should not be too large compared to w1, to avoid excessively loud
* low frequencies.
*/
static const float B[4][3] = {
{ 0.0f },
{ 1.0f },
{ 3.0f, 3.0f },
{ 3.6778f, 6.4595f, 2.3222f },
/*{ 4.2076f, 11.4877f, 5.7924f, 9.1401f }*/
};
void NfcFilterCreate1(NfcFilter *nfc, const float w0, const float w1)
{
float b_00, g_0;
float r;
memset(nfc, 0, sizeof(*nfc));
nfc->g = 1.0f;
nfc->coeffs[0] = 1.0f;
/* Calculate bass-boost coefficients. */
r = 0.5f * w0;
b_00 = B[1][0] * r;
g_0 = 1.0f + b_00;
nfc->coeffs[0] *= g_0;
nfc->coeffs[1] = (2.0f * b_00) / g_0;
/* Calculate bass-cut coefficients. */
r = 0.5f * w1;
b_00 = B[1][0] * r;
g_0 = 1.0f + b_00;
nfc->g /= g_0;
nfc->coeffs[0] /= g_0;
nfc->coeffs[1+1] = (2.0f * b_00) / g_0;
}
void NfcFilterAdjust1(NfcFilter *nfc, const float w0)
{
float b_00, g_0;
float r;
r = 0.5f * w0;
b_00 = B[1][0] * r;
g_0 = 1.0f + b_00;
nfc->coeffs[0] = nfc->g * g_0;
nfc->coeffs[1] = (2.0f * b_00) / g_0;
}
void NfcFilterUpdate1(NfcFilter *nfc, ALfloat *restrict dst, const float *restrict src, const int count)
{
const float b0 = nfc->coeffs[0];
const float a0 = nfc->coeffs[1];
const float a1 = nfc->coeffs[2];
float z1 = nfc->history[0];
int i;
for(i = 0;i < count;i++)
{
float out = src[i] * b0;
float y;
y = out - (a1*z1);
out = y + (a0*z1);
z1 += y;
dst[i] = out;
}
nfc->history[0] = z1;
}
void NfcFilterCreate2(NfcFilter *nfc, const float w0, const float w1)
{
float b_10, b_11, g_1;
float r;
memset(nfc, 0, sizeof(*nfc));
nfc->g = 1.0f;
nfc->coeffs[0] = 1.0f;
/* Calculate bass-boost coefficients. */
r = 0.5f * w0;
b_10 = B[2][0] * r;
b_11 = B[2][1] * r * r;
g_1 = 1.0f + b_10 + b_11;
nfc->coeffs[0] *= g_1;
nfc->coeffs[1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[2] = (4.0f * b_11) / g_1;
/* Calculate bass-cut coefficients. */
r = 0.5f * w1;
b_10 = B[2][0] * r;
b_11 = B[2][1] * r * r;
g_1 = 1.0f + b_10 + b_11;
nfc->g /= g_1;
nfc->coeffs[0] /= g_1;
nfc->coeffs[2+1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[2+2] = (4.0f * b_11) / g_1;
}
void NfcFilterAdjust2(NfcFilter *nfc, const float w0)
{
float b_10, b_11, g_1;
float r;
r = 0.5f * w0;
b_10 = B[2][0] * r;
b_11 = B[2][1] * r * r;
g_1 = 1.0f + b_10 + b_11;
nfc->coeffs[0] = nfc->g * g_1;
nfc->coeffs[1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[2] = (4.0f * b_11) / g_1;
}
void NfcFilterUpdate2(NfcFilter *nfc, ALfloat *restrict dst, const float *restrict src, const int count)
{
const float b0 = nfc->coeffs[0];
const float a00 = nfc->coeffs[1];
const float a01 = nfc->coeffs[2];
const float a10 = nfc->coeffs[3];
const float a11 = nfc->coeffs[4];
float z1 = nfc->history[0];
float z2 = nfc->history[1];
int i;
for(i = 0;i < count;i++)
{
float out = src[i] * b0;
float y;
y = out - (a10*z1) - (a11*z2);
out = y + (a00*z1) + (a01*z2);
z2 += z1;
z1 += y;
dst[i] = out;
}
nfc->history[0] = z1;
nfc->history[1] = z2;
}
void NfcFilterCreate3(NfcFilter *nfc, const float w0, const float w1)
{
float b_10, b_11, g_1;
float b_00, g_0;
float r;
memset(nfc, 0, sizeof(*nfc));
nfc->g = 1.0f;
nfc->coeffs[0] = 1.0f;
/* Calculate bass-boost coefficients. */
r = 0.5f * w0;
b_10 = B[3][0] * r;
b_11 = B[3][1] * r * r;
g_1 = 1.0f + b_10 + b_11;
nfc->coeffs[0] *= g_1;
nfc->coeffs[1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[2] = (4.0f * b_11) / g_1;
b_00 = B[3][2] * r;
g_0 = 1.0f + b_00;
nfc->coeffs[0] *= g_0;
nfc->coeffs[2+1] = (2.0f * b_00) / g_0;
/* Calculate bass-cut coefficients. */
r = 0.5f * w1;
b_10 = B[3][0] * r;
b_11 = B[3][1] * r * r;
g_1 = 1.0f + b_10 + b_11;
nfc->g /= g_1;
nfc->coeffs[0] /= g_1;
nfc->coeffs[3+1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[3+2] = (4.0f * b_11) / g_1;
b_00 = B[3][2] * r;
g_0 = 1.0f + b_00;
nfc->g /= g_0;
nfc->coeffs[0] /= g_0;
nfc->coeffs[3+2+1] = (2.0f * b_00) / g_0;
}
void NfcFilterAdjust3(NfcFilter *nfc, const float w0)
{
float b_10, b_11, g_1;
float b_00, g_0;
float r;
r = 0.5f * w0;
b_10 = B[3][0] * r;
b_11 = B[3][1] * r * r;
g_1 = 1.0f + b_10 + b_11;
nfc->coeffs[0] = nfc->g * g_1;
nfc->coeffs[1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[2] = (4.0f * b_11) / g_1;
b_00 = B[3][2] * r;
g_0 = 1.0f + b_00;
nfc->coeffs[0] *= g_0;
nfc->coeffs[2+1] = (2.0f * b_00) / g_0;
}
void NfcFilterUpdate3(NfcFilter *nfc, ALfloat *restrict dst, const float *restrict src, const int count)
{
const float b0 = nfc->coeffs[0];
const float a00 = nfc->coeffs[1];
const float a01 = nfc->coeffs[2];
const float a02 = nfc->coeffs[3];
const float a10 = nfc->coeffs[4];
const float a11 = nfc->coeffs[5];
const float a12 = nfc->coeffs[6];
float z1 = nfc->history[0];
float z2 = nfc->history[1];
float z3 = nfc->history[2];
int i;
for(i = 0;i < count;i++)
{
float out = src[i] * b0;
float y;
y = out - (a10*z1) - (a11*z2);
out = y + (a00*z1) + (a01*z2);
z2 += z1;
z1 += y;
y = out - (a12*z3);
out = y + (a02*z3);
z3 += y;
dst[i] = out;
}
nfc->history[0] = z1;
nfc->history[1] = z2;
nfc->history[2] = z3;
}
#if 0 /* Original methods the above are derived from. */
static void NfcFilterCreate(NfcFilter *nfc, const ALsizei order, const float src_dist, const float ctl_dist, const float rate)
{
static const float B[4][5] = {
{ },
{ 1.0f },
{ 3.0f, 3.0f },
{ 3.6778f, 6.4595f, 2.3222f },
{ 4.2076f, 11.4877f, 5.7924f, 9.1401f }
};
float w0 = SPEEDOFSOUNDMETRESPERSEC / (src_dist * rate);
float w1 = SPEEDOFSOUNDMETRESPERSEC / (ctl_dist * rate);
ALsizei i;
float r;
nfc->g = 1.0f;
nfc->coeffs[0] = 1.0f;
/* NOTE: Slight adjustment from the literature to raise the center
* frequency a bit (0.5 -> 1.0).
*/
r = 1.0f * w0;
for(i = 0; i < (order-1);i += 2)
{
float b_10 = B[order][i ] * r;
float b_11 = B[order][i+1] * r * r;
float g_1 = 1.0f + b_10 + b_11;
nfc->b[i] = b_10;
nfc->b[i + 1] = b_11;
nfc->coeffs[0] *= g_1;
nfc->coeffs[i+1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[i+2] = (4.0f * b_11) / g_1;
}
if(i < order)
{
float b_00 = B[order][i] * r;
float g_0 = 1.0f + b_00;
nfc->b[i] = b_00;
nfc->coeffs[0] *= g_0;
nfc->coeffs[i+1] = (2.0f * b_00) / g_0;
}
r = 1.0f * w1;
for(i = 0;i < (order-1);i += 2)
{
float b_10 = B[order][i ] * r;
float b_11 = B[order][i+1] * r * r;
float g_1 = 1.0f + b_10 + b_11;
nfc->g /= g_1;
nfc->coeffs[0] /= g_1;
nfc->coeffs[order+i+1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[order+i+2] = (4.0f * b_11) / g_1;
}
if(i < order)
{
float b_00 = B[order][i] * r;
float g_0 = 1.0f + b_00;
nfc->g /= g_0;
nfc->coeffs[0] /= g_0;
nfc->coeffs[order+i+1] = (2.0f * b_00) / g_0;
}
for(i = 0; i < MAX_AMBI_ORDER; i++)
nfc->history[i] = 0.0f;
}
static void NfcFilterAdjust(NfcFilter *nfc, const float distance)
{
int i;
nfc->coeffs[0] = nfc->g;
for(i = 0;i < (nfc->order-1);i += 2)
{
float b_10 = nfc->b[i] / distance;
float b_11 = nfc->b[i+1] / (distance * distance);
float g_1 = 1.0f + b_10 + b_11;
nfc->coeffs[0] *= g_1;
nfc->coeffs[i+1] = ((2.0f * b_10) + (4.0f * b_11)) / g_1;
nfc->coeffs[i+2] = (4.0f * b_11) / g_1;
}
if(i < nfc->order)
{
float b_00 = nfc->b[i] / distance;
float g_0 = 1.0f + b_00;
nfc->coeffs[0] *= g_0;
nfc->coeffs[i+1] = (2.0f * b_00) / g_0;
}
}
static float NfcFilterUpdate(const float in, NfcFilter *nfc)
{
int i;
float out = in * nfc->coeffs[0];
for(i = 0;i < (nfc->order-1);i += 2)
{
float y = out - (nfc->coeffs[nfc->order+i+1] * nfc->history[i]) -
(nfc->coeffs[nfc->order+i+2] * nfc->history[i+1]) + 1.0e-30f;
out = y + (nfc->coeffs[i+1]*nfc->history[i]) + (nfc->coeffs[i+2]*nfc->history[i+1]);
nfc->history[i+1] += nfc->history[i];
nfc->history[i] += y;
}
if(i < nfc->order)
{
float y = out - (nfc->coeffs[nfc->order+i+1] * nfc->history[i]) + 1.0e-30f;
out = y + (nfc->coeffs[i+1] * nfc->history[i]);
nfc->history[i] += y;
}
return out;
}
#endif
|