aboutsummaryrefslogtreecommitdiffstats
path: root/alc/alu.cpp
blob: 23518fa98b3e303fcb4d6efde9c9ecf01c4f68e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
/**
 * OpenAL cross platform audio library
 * Copyright (C) 1999-2007 by authors.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include "alu.h"

#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <chrono>
#include <climits>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <optional>
#include <stdint.h>
#include <utility>

#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "alstring.h"
#include "atomic.h"
#include "core/ambidefs.h"
#include "core/async_event.h"
#include "core/bformatdec.h"
#include "core/bs2b.h"
#include "core/bsinc_defs.h"
#include "core/bsinc_tables.h"
#include "core/bufferline.h"
#include "core/buffer_storage.h"
#include "core/context.h"
#include "core/cpu_caps.h"
#include "core/cubic_tables.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effects/base.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/filters/nfc.h"
#include "core/fpu_ctrl.h"
#include "core/hrtf.h"
#include "core/mastering.h"
#include "core/mixer.h"
#include "core/mixer/defs.h"
#include "core/mixer/hrtfdefs.h"
#include "core/resampler_limits.h"
#include "core/uhjfilter.h"
#include "core/voice.h"
#include "core/voice_change.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
#include "ringbuffer.h"
#include "strutils.h"
#include "vecmat.h"
#include "vector.h"

struct CTag;
#ifdef HAVE_SSE
struct SSETag;
#endif
#ifdef HAVE_SSE2
struct SSE2Tag;
#endif
#ifdef HAVE_SSE4_1
struct SSE4Tag;
#endif
#ifdef HAVE_NEON
struct NEONTag;
#endif
struct PointTag;
struct LerpTag;
struct CubicTag;
struct BSincTag;
struct FastBSincTag;


static_assert(!(MaxResamplerPadding&1), "MaxResamplerPadding is not a multiple of two");


namespace {

using uint = unsigned int;
using namespace std::chrono;

using namespace std::placeholders;

float InitConeScale()
{
    float ret{1.0f};
    if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
    {
        if(al::strcasecmp(optval->c_str(), "true") == 0
            || strtol(optval->c_str(), nullptr, 0) == 1)
            ret *= 0.5f;
    }
    return ret;
}
/* Cone scalar */
const float ConeScale{InitConeScale()};

/* Localized scalars for mono sources (initialized in aluInit, after
 * configuration is loaded).
 */
float XScale{1.0f};
float YScale{1.0f};
float ZScale{1.0f};

/* Source distance scale for NFC filters. */
float NfcScale{1.0f};


using HrtfDirectMixerFunc = void(*)(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
    const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, float *TempBuf,
    HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);

HrtfDirectMixerFunc MixDirectHrtf{MixDirectHrtf_<CTag>};

inline HrtfDirectMixerFunc SelectHrtfMixer(void)
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return MixDirectHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return MixDirectHrtf_<SSETag>;
#endif

    return MixDirectHrtf_<CTag>;
}


inline void BsincPrepare(const uint increment, BsincState *state, const BSincTable *table)
{
    size_t si{BSincScaleCount - 1};
    float sf{0.0f};

    if(increment > MixerFracOne)
    {
        sf = MixerFracOne/static_cast<float>(increment) - table->scaleBase;
        sf = maxf(0.0f, BSincScaleCount*sf*table->scaleRange - 1.0f);
        si = float2uint(sf);
        /* The interpolation factor is fit to this diagonally-symmetric curve
         * to reduce the transition ripple caused by interpolating different
         * scales of the sinc function.
         */
        sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
    }

    state->sf = sf;
    state->m = table->m[si];
    state->l = (state->m/2) - 1;
    state->filter = table->Tab + table->filterOffset[si];
}

inline ResamplerFunc SelectResampler(Resampler resampler, uint increment)
{
    switch(resampler)
    {
    case Resampler::Point:
        return Resample_<PointTag,CTag>;
    case Resampler::Linear:
#ifdef HAVE_NEON
        if((CPUCapFlags&CPU_CAP_NEON))
            return Resample_<LerpTag,NEONTag>;
#endif
#ifdef HAVE_SSE4_1
        if((CPUCapFlags&CPU_CAP_SSE4_1))
            return Resample_<LerpTag,SSE4Tag>;
#endif
#ifdef HAVE_SSE2
        if((CPUCapFlags&CPU_CAP_SSE2))
            return Resample_<LerpTag,SSE2Tag>;
#endif
        return Resample_<LerpTag,CTag>;
    case Resampler::Cubic:
#ifdef HAVE_NEON
        if((CPUCapFlags&CPU_CAP_NEON))
            return Resample_<CubicTag,NEONTag>;
#endif
#ifdef HAVE_SSE
        if((CPUCapFlags&CPU_CAP_SSE))
            return Resample_<CubicTag,SSETag>;
#endif
        return Resample_<CubicTag,CTag>;
    case Resampler::BSinc12:
    case Resampler::BSinc24:
        if(increment > MixerFracOne)
        {
#ifdef HAVE_NEON
            if((CPUCapFlags&CPU_CAP_NEON))
                return Resample_<BSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
            if((CPUCapFlags&CPU_CAP_SSE))
                return Resample_<BSincTag,SSETag>;
#endif
            return Resample_<BSincTag,CTag>;
        }
        /* fall-through */
    case Resampler::FastBSinc12:
    case Resampler::FastBSinc24:
#ifdef HAVE_NEON
        if((CPUCapFlags&CPU_CAP_NEON))
            return Resample_<FastBSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
        if((CPUCapFlags&CPU_CAP_SSE))
            return Resample_<FastBSincTag,SSETag>;
#endif
        return Resample_<FastBSincTag,CTag>;
    }

    return Resample_<PointTag,CTag>;
}

} // namespace

void aluInit(CompatFlagBitset flags, const float nfcscale)
{
    MixDirectHrtf = SelectHrtfMixer();
    XScale = flags.test(CompatFlags::ReverseX) ? -1.0f : 1.0f;
    YScale = flags.test(CompatFlags::ReverseY) ? -1.0f : 1.0f;
    ZScale = flags.test(CompatFlags::ReverseZ) ? -1.0f : 1.0f;

    NfcScale = clampf(nfcscale, 0.0001f, 10000.0f);
}


ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state)
{
    switch(resampler)
    {
    case Resampler::Point:
    case Resampler::Linear:
        break;
    case Resampler::Cubic:
        state->cubic.filter = gCubicSpline.Tab.data();
        break;
    case Resampler::FastBSinc12:
    case Resampler::BSinc12:
        BsincPrepare(increment, &state->bsinc, &gBSinc12);
        break;
    case Resampler::FastBSinc24:
    case Resampler::BSinc24:
        BsincPrepare(increment, &state->bsinc, &gBSinc24);
        break;
    }
    return SelectResampler(resampler, increment);
}


void DeviceBase::ProcessHrtf(const size_t SamplesToDo)
{
    /* HRTF is stereo output only. */
    const size_t lidx{RealOut.ChannelIndex[FrontLeft]};
    const size_t ridx{RealOut.ChannelIndex[FrontRight]};

    MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
        mHrtfState->mTemp.data(), mHrtfState->mChannels.data(), mHrtfState->mIrSize, SamplesToDo);
}

void DeviceBase::ProcessAmbiDec(const size_t SamplesToDo)
{
    AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
}

void DeviceBase::ProcessAmbiDecStablized(const size_t SamplesToDo)
{
    /* Decode with front image stablization. */
    const size_t lidx{RealOut.ChannelIndex[FrontLeft]};
    const size_t ridx{RealOut.ChannelIndex[FrontRight]};
    const size_t cidx{RealOut.ChannelIndex[FrontCenter]};

    AmbiDecoder->processStablize(RealOut.Buffer, Dry.Buffer.data(), lidx, ridx, cidx,
        SamplesToDo);
}

void DeviceBase::ProcessUhj(const size_t SamplesToDo)
{
    /* UHJ is stereo output only. */
    const size_t lidx{RealOut.ChannelIndex[FrontLeft]};
    const size_t ridx{RealOut.ChannelIndex[FrontRight]};

    /* Encode to stereo-compatible 2-channel UHJ output. */
    mUhjEncoder->encode(RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
        {{Dry.Buffer[0].data(), Dry.Buffer[1].data(), Dry.Buffer[2].data()}}, SamplesToDo);
}

void DeviceBase::ProcessBs2b(const size_t SamplesToDo)
{
    /* First, decode the ambisonic mix to the "real" output. */
    AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);

    /* BS2B is stereo output only. */
    const size_t lidx{RealOut.ChannelIndex[FrontLeft]};
    const size_t ridx{RealOut.ChannelIndex[FrontRight]};

    /* Now apply the BS2B binaural/crossfeed filter. */
    bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
        SamplesToDo);
}


namespace {

/* This RNG method was created based on the math found in opusdec. It's quick,
 * and starting with a seed value of 22222, is suitable for generating
 * whitenoise.
 */
inline uint dither_rng(uint *seed) noexcept
{
    *seed = (*seed * 96314165) + 907633515;
    return *seed;
}


/* Ambisonic upsampler function. It's effectively a matrix multiply. It takes
 * an 'upsampler' and 'rotator' as the input matrices, and creates a matrix
 * that behaves as if the B-Format input was first decoded to a speaker array
 * at its input order, encoded back into the higher order mix, then finally
 * rotated.
 */
void UpsampleBFormatTransform(
    const al::span<std::array<float,MaxAmbiChannels>,MaxAmbiChannels> output,
    const al::span<const std::array<float,MaxAmbiChannels>> upsampler,
    const al::span<std::array<float,MaxAmbiChannels>,MaxAmbiChannels> rotator, size_t coeffs_order)
{
    const size_t num_chans{AmbiChannelsFromOrder(coeffs_order)};
    for(size_t i{0};i < upsampler.size();++i)
        output[i].fill(0.0f);
    for(size_t i{0};i < upsampler.size();++i)
    {
        for(size_t k{0};k < num_chans;++k)
        {
            float *RESTRICT out{output[i].data()};
            /* Write the full number of channels. The compiler will have an
             * easier time optimizing if it has a fixed length.
             */
            for(size_t j{0};j < MaxAmbiChannels;++j)
                out[j] += upsampler[i][k] * rotator[k][j];
        }
    }
}


constexpr auto GetAmbiScales(AmbiScaling scaletype) noexcept
{
    switch(scaletype)
    {
    case AmbiScaling::FuMa: return al::span{AmbiScale::FromFuMa};
    case AmbiScaling::SN3D: return al::span{AmbiScale::FromSN3D};
    case AmbiScaling::UHJ: return al::span{AmbiScale::FromUHJ};
    case AmbiScaling::N3D: break;
    }
    return al::span{AmbiScale::FromN3D};
}

constexpr auto GetAmbiLayout(AmbiLayout layouttype) noexcept
{
    if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa};
    return al::span{AmbiIndex::FromACN};
}

constexpr auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept
{
    if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa2D};
    return al::span{AmbiIndex::FromACN2D};
}


bool CalcContextParams(ContextBase *ctx)
{
    ContextProps *props{ctx->mParams.ContextUpdate.exchange(nullptr, std::memory_order_acq_rel)};
    if(!props) return false;

    const alu::Vector pos{props->Position[0], props->Position[1], props->Position[2], 1.0f};
    ctx->mParams.Position = pos;

    /* AT then UP */
    alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
    N.normalize();
    alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
    V.normalize();
    /* Build and normalize right-vector */
    alu::Vector U{N.cross_product(V)};
    U.normalize();

    const alu::Matrix rot{
        U[0], V[0], -N[0], 0.0,
        U[1], V[1], -N[1], 0.0,
        U[2], V[2], -N[2], 0.0,
         0.0,  0.0,   0.0, 1.0};
    const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0};

    ctx->mParams.Matrix = rot;
    ctx->mParams.Velocity = rot * vel;

    ctx->mParams.Gain = props->Gain * ctx->mGainBoost;
    ctx->mParams.MetersPerUnit = props->MetersPerUnit;
    ctx->mParams.AirAbsorptionGainHF = props->AirAbsorptionGainHF;

    ctx->mParams.DopplerFactor = props->DopplerFactor;
    ctx->mParams.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;

    ctx->mParams.SourceDistanceModel = props->SourceDistanceModel;
    ctx->mParams.mDistanceModel = props->mDistanceModel;

    AtomicReplaceHead(ctx->mFreeContextProps, props);
    return true;
}

bool CalcEffectSlotParams(EffectSlot *slot, EffectSlot **sorted_slots, ContextBase *context)
{
    EffectSlotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)};
    if(!props) return false;

    /* If the effect slot target changed, clear the first sorted entry to force
     * a re-sort.
     */
    if(slot->Target != props->Target)
        *sorted_slots = nullptr;
    slot->Gain = props->Gain;
    slot->AuxSendAuto = props->AuxSendAuto;
    slot->Target = props->Target;
    slot->EffectType = props->Type;
    slot->mEffectProps = props->Props;
    if(props->Type == EffectSlotType::Reverb || props->Type == EffectSlotType::EAXReverb)
    {
        slot->RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
        slot->DecayTime = props->Props.Reverb.DecayTime;
        slot->DecayLFRatio = props->Props.Reverb.DecayLFRatio;
        slot->DecayHFRatio = props->Props.Reverb.DecayHFRatio;
        slot->DecayHFLimit = props->Props.Reverb.DecayHFLimit;
        slot->AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
    }
    else
    {
        slot->RoomRolloff = 0.0f;
        slot->DecayTime = 0.0f;
        slot->DecayLFRatio = 0.0f;
        slot->DecayHFRatio = 0.0f;
        slot->DecayHFLimit = false;
        slot->AirAbsorptionGainHF = 1.0f;
    }

    EffectState *state{props->State.release()};
    EffectState *oldstate{slot->mEffectState.release()};
    slot->mEffectState.reset(state);

    /* Only release the old state if it won't get deleted, since we can't be
     * deleting/freeing anything in the mixer.
     */
    if(!oldstate->releaseIfNoDelete())
    {
        /* Otherwise, if it would be deleted send it off with a release event. */
        RingBuffer *ring{context->mAsyncEvents.get()};
        auto evt_vec = ring->getWriteVector();
        if(evt_vec.first.len > 0) LIKELY
        {
            auto &evt = InitAsyncEvent<AsyncEffectReleaseEvent>(evt_vec.first.buf);
            evt.mEffectState = oldstate;
            ring->writeAdvance(1);
        }
        else
        {
            /* If writing the event failed, the queue was probably full. Store
             * the old state in the property object where it can eventually be
             * cleaned up sometime later (not ideal, but better than blocking
             * or leaking).
             */
            props->State.reset(oldstate);
        }
    }

    AtomicReplaceHead(context->mFreeEffectslotProps, props);

    EffectTarget output;
    if(EffectSlot *target{slot->Target})
        output = EffectTarget{&target->Wet, nullptr};
    else
    {
        DeviceBase *device{context->mDevice};
        output = EffectTarget{&device->Dry, &device->RealOut};
    }
    state->update(context, slot, &slot->mEffectProps, output);
    return true;
}


/* Scales the azimuth of the given vector by 3 if it's in front. Effectively
 * scales +/-30 degrees to +/-90 degrees, leaving > +90 and < -90 alone.
 */
inline std::array<float,3> ScaleAzimuthFront3(std::array<float,3> pos)
{
    if(pos[2] < 0.0f)
    {
        /* Normalize the length of the x,z components for a 2D vector of the
         * azimuth angle. Negate Z since {0,0,-1} is angle 0.
         */
        const float len2d{std::sqrt(pos[0]*pos[0] + pos[2]*pos[2])};
        float x{pos[0] / len2d};
        float z{-pos[2] / len2d};

        /* Z > cos(pi/6) = -30 < azimuth < 30 degrees. */
        if(z > 0.866025403785f)
        {
            /* Triple the angle represented by x,z. */
            x = x*3.0f - x*x*x*4.0f;
            z = z*z*z*4.0f - z*3.0f;

            /* Scale the vector back to fit in 3D. */
            pos[0] = x * len2d;
            pos[2] = -z * len2d;
        }
        else
        {
            /* If azimuth >= 30 degrees, clamp to 90 degrees. */
            pos[0] = std::copysign(len2d, pos[0]);
            pos[2] = 0.0f;
        }
    }
    return pos;
}

/* Scales the azimuth of the given vector by 1.5 (3/2) if it's in front. */
inline std::array<float,3> ScaleAzimuthFront3_2(std::array<float,3> pos)
{
    if(pos[2] < 0.0f)
    {
        const float len2d{std::sqrt(pos[0]*pos[0] + pos[2]*pos[2])};
        float x{pos[0] / len2d};
        float z{-pos[2] / len2d};

        /* Z > cos(pi/3) = -60 < azimuth < 60 degrees. */
        if(z > 0.5f)
        {
            /* Halve the angle represented by x,z. */
            x = std::copysign(std::sqrt((1.0f - z) * 0.5f), x);
            z = std::sqrt((1.0f + z) * 0.5f);

            /* Triple the angle represented by x,z. */
            x = x*3.0f - x*x*x*4.0f;
            z = z*z*z*4.0f - z*3.0f;

            /* Scale the vector back to fit in 3D. */
            pos[0] = x * len2d;
            pos[2] = -z * len2d;
        }
        else
        {
            /* If azimuth >= 60 degrees, clamp to 90 degrees. */
            pos[0] = std::copysign(len2d, pos[0]);
            pos[2] = 0.0f;
        }
    }
    return pos;
}


/* Begin ambisonic rotation helpers.
 *
 * Rotating first-order B-Format just needs a straight-forward X/Y/Z rotation
 * matrix. Higher orders, however, are more complicated. The method implemented
 * here is a recursive algorithm (the rotation for first-order is used to help
 * generate the second-order rotation, which helps generate the third-order
 * rotation, etc).
 *
 * Adapted from
 * <https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSHrotMtx.m>,
 * provided under the BSD 3-Clause license.
 *
 * Copyright (c) 2015, Archontis Politis
 * Copyright (c) 2019, Christopher Robinson
 *
 * The u, v, and w coefficients used for generating higher-order rotations are
 * precomputed since they're constant. The second-order coefficients are
 * followed by the third-order coefficients, etc.
 */
constexpr size_t CalcRotatorSize(size_t l) noexcept
{
    if(l >= 2)
        return (l*2 + 1)*(l*2 + 1) + CalcRotatorSize(l-1);
    return 0;
}

struct RotatorCoeffs {
    struct CoeffValues {
        float u, v, w;
    };
    std::array<CoeffValues,CalcRotatorSize(MaxAmbiOrder)> mCoeffs{};

    RotatorCoeffs()
    {
        auto coeffs = mCoeffs.begin();

        for(int l=2;l <= MaxAmbiOrder;++l)
        {
            for(int n{-l};n <= l;++n)
            {
                for(int m{-l};m <= l;++m)
                {
                    /* compute u,v,w terms of Eq.8.1 (Table I)
                     *
                     * const bool d{m == 0}; // the delta function d_m0
                     * const double denom{(std::abs(n) == l) ?
                     *     (2*l) * (2*l - 1) : (l*l - n*n)};
                     *
                     * const int abs_m{std::abs(m)};
                     * coeffs->u = std::sqrt((l*l - m*m) / denom);
                     * coeffs->v = std::sqrt((l+abs_m-1) * (l+abs_m) / denom) *
                     *     (1.0+d) * (1.0 - 2.0*d) * 0.5;
                     * coeffs->w = std::sqrt((l-abs_m-1) * (l-abs_m) / denom) *
                     *     (1.0-d) * -0.5;
                     */

                    const double denom{static_cast<double>((std::abs(n) == l) ?
                          (2*l) * (2*l - 1) : (l*l - n*n))};

                    if(m == 0)
                    {
                        coeffs->u = static_cast<float>(std::sqrt(l * l / denom));
                        coeffs->v = static_cast<float>(std::sqrt((l-1) * l / denom) * -1.0);
                        coeffs->w = 0.0f;
                    }
                    else
                    {
                        const int abs_m{std::abs(m)};
                        coeffs->u = static_cast<float>(std::sqrt((l*l - m*m) / denom));
                        coeffs->v = static_cast<float>(std::sqrt((l+abs_m-1) * (l+abs_m) / denom) *
                            0.5);
                        coeffs->w = static_cast<float>(std::sqrt((l-abs_m-1) * (l-abs_m) / denom) *
                            -0.5);
                    }
                    ++coeffs;
                }
            }
        }
    }
};
const RotatorCoeffs RotatorCoeffArray{};

/**
 * Given the matrix, pre-filled with the (zeroth- and) first-order rotation
 * coefficients, this fills in the coefficients for the higher orders up to and
 * including the given order. The matrix is in ACN layout.
 */
void AmbiRotator(AmbiRotateMatrix &matrix, const int order)
{
    /* Don't do anything for < 2nd order. */
    if(order < 2) return;

    auto P = [](const int i, const int l, const int a, const int n, const size_t last_band,
        const AmbiRotateMatrix &R)
    {
        const float ri1{ R[ 1+2][static_cast<size_t>(i+2)]};
        const float rim1{R[-1+2][static_cast<size_t>(i+2)]};
        const float ri0{ R[ 0+2][static_cast<size_t>(i+2)]};

        const size_t y{last_band + static_cast<size_t>(a+l-1)};
        if(n == -l)
            return ri1*R[last_band][y] + rim1*R[last_band + static_cast<size_t>(l-1)*2][y];
        if(n == l)
            return ri1*R[last_band + static_cast<size_t>(l-1)*2][y] - rim1*R[last_band][y];
        return ri0*R[last_band + static_cast<size_t>(n+l-1)][y];
    };

    auto U = [P](const int l, const int m, const int n, const size_t last_band,
        const AmbiRotateMatrix &R)
    {
        return P(0, l, m, n, last_band, R);
    };
    auto V = [P](const int l, const int m, const int n, const size_t last_band,
        const AmbiRotateMatrix &R)
    {
        using namespace al::numbers;
        if(m > 0)
        {
            const bool d{m == 1};
            const float p0{P( 1, l,  m-1, n, last_band, R)};
            const float p1{P(-1, l, -m+1, n, last_band, R)};
            return d ? p0*sqrt2_v<float> : (p0 - p1);
        }
        const bool d{m == -1};
        const float p0{P( 1, l,  m+1, n, last_band, R)};
        const float p1{P(-1, l, -m-1, n, last_band, R)};
        return d ? p1*sqrt2_v<float> : (p0 + p1);
    };
    auto W = [P](const int l, const int m, const int n, const size_t last_band,
        const AmbiRotateMatrix &R)
    {
        assert(m != 0);
        if(m > 0)
        {
            const float p0{P( 1, l,  m+1, n, last_band, R)};
            const float p1{P(-1, l, -m-1, n, last_band, R)};
            return p0 + p1;
        }
        const float p0{P( 1, l,  m-1, n, last_band, R)};
        const float p1{P(-1, l, -m+1, n, last_band, R)};
        return p0 - p1;
    };

    // compute rotation matrix of each subsequent band recursively
    auto coeffs = RotatorCoeffArray.mCoeffs.cbegin();
    size_t band_idx{4}, last_band{1};
    for(int l{2};l <= order;++l)
    {
        size_t y{band_idx};
        for(int n{-l};n <= l;++n,++y)
        {
            size_t x{band_idx};
            for(int m{-l};m <= l;++m,++x)
            {
                float r{0.0f};

                // computes Eq.8.1
                if(const float u{coeffs->u}; u != 0.0f)
                    r += u * U(l, m, n, last_band, matrix);
                if(const float v{coeffs->v}; v != 0.0f)
                    r += v * V(l, m, n, last_band, matrix);
                if(const float w{coeffs->w}; w != 0.0f)
                    r += w * W(l, m, n, last_band, matrix);

                matrix[y][x] = r;
                ++coeffs;
            }
        }
        last_band = band_idx;
        band_idx += static_cast<uint>(l)*2_uz + 1;
    }
}
/* End ambisonic rotation helpers. */


constexpr float sin30{0.5f};
constexpr float cos30{0.866025403785f};
constexpr float sin45{al::numbers::sqrt2_v<float>*0.5f};
constexpr float cos45{al::numbers::sqrt2_v<float>*0.5f};
constexpr float sin110{ 0.939692620786f};
constexpr float cos110{-0.342020143326f};

struct ChanPosMap {
    Channel channel;
    std::array<float,3> pos;
};


struct GainTriplet { float Base, HF, LF; };

void CalcPanningAndFilters(Voice *voice, const float xpos, const float ypos, const float zpos,
    const float Distance, const float Spread, const GainTriplet &DryGain,
    const al::span<const GainTriplet,MAX_SENDS> WetGain, EffectSlot *(&SendSlots)[MAX_SENDS],
    const VoiceProps *props, const ContextParams &Context, DeviceBase *Device)
{
    static constexpr ChanPosMap MonoMap[1]{
        { FrontCenter, std::array{0.0f, 0.0f, -1.0f} }
    }, RearMap[2]{
        { BackLeft,  std::array{-sin30, 0.0f, cos30} },
        { BackRight, std::array{ sin30, 0.0f, cos30} },
    }, QuadMap[4]{
        { FrontLeft,  std::array{-sin45, 0.0f, -cos45} },
        { FrontRight, std::array{ sin45, 0.0f, -cos45} },
        { BackLeft,   std::array{-sin45, 0.0f,  cos45} },
        { BackRight,  std::array{ sin45, 0.0f,  cos45} },
    }, X51Map[6]{
        { FrontLeft,   std::array{-sin30, 0.0f, -cos30} },
        { FrontRight,  std::array{ sin30, 0.0f, -cos30} },
        { FrontCenter, std::array{  0.0f, 0.0f, -1.0f} },
        { LFE, {} },
        { SideLeft,    std::array{-sin110, 0.0f, -cos110} },
        { SideRight,   std::array{ sin110, 0.0f, -cos110} },
    }, X61Map[7]{
        { FrontLeft,   std::array{-sin30, 0.0f, -cos30} },
        { FrontRight,  std::array{ sin30, 0.0f, -cos30} },
        { FrontCenter, std::array{  0.0f, 0.0f, -1.0f} },
        { LFE, {} },
        { BackCenter,  std::array{ 0.0f, 0.0f, 1.0f} },
        { SideLeft,    std::array{-1.0f, 0.0f, 0.0f} },
        { SideRight,   std::array{ 1.0f, 0.0f, 0.0f} },
    }, X71Map[8]{
        { FrontLeft,   std::array{-sin30, 0.0f, -cos30} },
        { FrontRight,  std::array{ sin30, 0.0f, -cos30} },
        { FrontCenter, std::array{  0.0f, 0.0f, -1.0f} },
        { LFE, {} },
        { BackLeft,    std::array{-sin30, 0.0f, cos30} },
        { BackRight,   std::array{ sin30, 0.0f, cos30} },
        { SideLeft,    std::array{ -1.0f, 0.0f, 0.0f} },
        { SideRight,   std::array{  1.0f, 0.0f, 0.0f} },
    };

    ChanPosMap StereoMap[2]{
        { FrontLeft,   std::array{-sin30, 0.0f, -cos30} },
        { FrontRight,  std::array{ sin30, 0.0f, -cos30} },
    };

    const auto Frequency = static_cast<float>(Device->Frequency);
    const uint NumSends{Device->NumAuxSends};

    const size_t num_channels{voice->mChans.size()};
    ASSUME(num_channels > 0);

    for(auto &chandata : voice->mChans)
    {
        chandata.mDryParams.Hrtf.Target = HrtfFilter{};
        chandata.mDryParams.Gains.Target.fill(0.0f);
        std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
            [](SendParams &params) -> void { params.Gains.Target.fill(0.0f); });
    }

    DirectMode DirectChannels{props->DirectChannels};
    const ChanPosMap *chans{nullptr};
    switch(voice->mFmtChannels)
    {
    case FmtMono:
        chans = MonoMap;
        /* Mono buffers are never played direct. */
        DirectChannels = DirectMode::Off;
        break;

    case FmtStereo:
        if(DirectChannels == DirectMode::Off)
        {
            for(size_t i{0};i < 2;++i)
            {
                /* StereoPan is counter-clockwise in radians. */
                const float a{props->StereoPan[i]};
                StereoMap[i].pos[0] = -std::sin(a);
                StereoMap[i].pos[2] = -std::cos(a);
            }
        }
        chans = StereoMap;
        break;

    case FmtRear: chans = RearMap; break;
    case FmtQuad: chans = QuadMap; break;
    case FmtX51: chans = X51Map; break;
    case FmtX61: chans = X61Map; break;
    case FmtX71: chans = X71Map; break;

    case FmtBFormat2D:
    case FmtBFormat3D:
    case FmtUHJ2:
    case FmtUHJ3:
    case FmtUHJ4:
    case FmtSuperStereo:
        DirectChannels = DirectMode::Off;
        break;
    }

    voice->mFlags.reset(VoiceHasHrtf).reset(VoiceHasNfc);
    if(auto *decoder{voice->mDecoder.get()})
        decoder->mWidthControl = minf(props->EnhWidth, 0.7f);

    if(IsAmbisonic(voice->mFmtChannels))
    {
        /* Special handling for B-Format and UHJ sources. */

        if(Device->AvgSpeakerDist > 0.0f && voice->mFmtChannels != FmtUHJ2
            && voice->mFmtChannels != FmtSuperStereo)
        {
            if(!(Distance > std::numeric_limits<float>::epsilon()))
            {
                /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
                 * is what we want for FOA input. The first channel may have
                 * been previously re-adjusted if panned, so reset it.
                 */
                voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
            }
            else
            {
                /* Clamp the distance for really close sources, to prevent
                 * excessive bass.
                 */
                const float mdist{maxf(Distance*NfcScale, Device->AvgSpeakerDist/4.0f)};
                const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};

                /* Only need to adjust the first channel of a B-Format source. */
                voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
            }

            voice->mFlags.set(VoiceHasNfc);
        }

        /* Panning a B-Format sound toward some direction is easy. Just pan the
         * first (W) channel as a normal mono sound. The angular spread is used
         * as a directional scalar to blend between full coverage and full
         * panning.
         */
        const float coverage{!(Distance > std::numeric_limits<float>::epsilon()) ? 1.0f :
            (al::numbers::inv_pi_v<float>/2.0f * Spread)};

        auto calc_coeffs = [xpos,ypos,zpos](RenderMode mode)
        {
            if(mode != RenderMode::Pairwise)
                return CalcDirectionCoeffs(std::array{xpos, ypos, zpos}, 0.0f);
            const auto pos = ScaleAzimuthFront3_2(std::array{xpos, ypos, zpos});
            return CalcDirectionCoeffs(pos, 0.0f);
        };
        const auto scales = GetAmbiScales(voice->mAmbiScaling);
        auto coeffs = calc_coeffs(Device->mRenderMode);

        if(!(coverage > 0.0f))
        {
            ComputePanGains(&Device->Dry, coeffs, DryGain.Base*scales[0],
                voice->mChans[0].mDryParams.Gains.Target);
            for(uint i{0};i < NumSends;i++)
            {
                if(const EffectSlot *Slot{SendSlots[i]})
                    ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base*scales[0],
                        voice->mChans[0].mWetParams[i].Gains.Target);
            }
        }
        else
        {
            /* Local B-Format sources have their XYZ channels rotated according
             * to the orientation.
             */
            /* AT then UP */
            alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
            N.normalize();
            alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
            V.normalize();
            if(!props->HeadRelative)
            {
                N = Context.Matrix * N;
                V = Context.Matrix * V;
            }
            /* Build and normalize right-vector */
            alu::Vector U{N.cross_product(V)};
            U.normalize();

            /* Build a rotation matrix. Manually fill the zeroth- and first-
             * order elements, then construct the rotation for the higher
             * orders.
             */
            AmbiRotateMatrix &shrot = Device->mAmbiRotateMatrix;
            shrot.fill(AmbiRotateMatrix::value_type{});

            shrot[0][0] = 1.0f;
            shrot[1][1] =  U[0]; shrot[1][2] = -U[1]; shrot[1][3] =  U[2];
            shrot[2][1] = -V[0]; shrot[2][2] =  V[1]; shrot[2][3] = -V[2];
            shrot[3][1] = -N[0]; shrot[3][2] =  N[1]; shrot[3][3] = -N[2];
            AmbiRotator(shrot, static_cast<int>(Device->mAmbiOrder));

            /* If the device is higher order than the voice, "upsample" the
             * matrix.
             *
             * NOTE: Starting with second-order, a 2D upsample needs to be
             * applied with a 2D source and 3D output, even when they're the
             * same order. This is because higher orders have a height offset
             * on various channels (i.e. when elevation=0, those height-related
             * channels should be non-0).
             */
            AmbiRotateMatrix &mixmatrix = Device->mAmbiRotateMatrix2;
            if(Device->mAmbiOrder > voice->mAmbiOrder
                || (Device->mAmbiOrder >= 2 && !Device->m2DMixing
                    && Is2DAmbisonic(voice->mFmtChannels)))
            {
                if(voice->mAmbiOrder == 1)
                {
                    const auto upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
                        al::span{AmbiScale::FirstOrder2DUp} : al::span{AmbiScale::FirstOrderUp};
                    UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
                }
                else if(voice->mAmbiOrder == 2)
                {
                    const auto upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
                        al::span{AmbiScale::SecondOrder2DUp} : al::span{AmbiScale::SecondOrderUp};
                    UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
                }
                else if(voice->mAmbiOrder == 3)
                {
                    const auto upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
                        al::span{AmbiScale::ThirdOrder2DUp} : al::span{AmbiScale::ThirdOrderUp};
                    UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
                }
                else if(voice->mAmbiOrder == 4)
                {
                    const auto upsampler = al::span{AmbiScale::FourthOrder2DUp};
                    UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
                }
                else
                    al::unreachable();
            }
            else
                mixmatrix = shrot;

            /* Convert the rotation matrix for input ordering and scaling, and
             * whether input is 2D or 3D.
             */
            const uint8_t *index_map{Is2DAmbisonic(voice->mFmtChannels) ?
                GetAmbi2DLayout(voice->mAmbiLayout).data() :
                GetAmbiLayout(voice->mAmbiLayout).data()};

            /* Scale the panned W signal inversely to coverage (full coverage
             * means no panned signal), and according to the channel scaling.
             */
            std::for_each(coeffs.begin(), coeffs.end(),
                [scale=(1.0f-coverage)*scales[0]](float &coeff) noexcept { coeff *= scale; });

            for(size_t c{0};c < num_channels;c++)
            {
                const size_t acn{index_map[c]};
                const float scale{scales[acn] * coverage};

                /* For channel 0, combine the B-Format signal (scaled according
                 * to the coverage amount) with the directional pan. For all
                 * other channels, use just the (scaled) B-Format signal.
                 */
                for(size_t x{0};x < MaxAmbiChannels;++x)
                    coeffs[x] += mixmatrix[acn][x] * scale;

                ComputePanGains(&Device->Dry, coeffs, DryGain.Base,
                    voice->mChans[c].mDryParams.Gains.Target);

                for(uint i{0};i < NumSends;i++)
                {
                    if(const EffectSlot *Slot{SendSlots[i]})
                        ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                            voice->mChans[c].mWetParams[i].Gains.Target);
                }

                coeffs = std::array<float,MaxAmbiChannels>{};
            }
        }
    }
    else if(DirectChannels != DirectMode::Off && !Device->RealOut.RemixMap.empty())
    {
        /* Direct source channels always play local. Skip the virtual channels
         * and write inputs to the matching real outputs.
         */
        voice->mDirect.Buffer = Device->RealOut.Buffer;

        for(size_t c{0};c < num_channels;c++)
        {
            uint idx{Device->channelIdxByName(chans[c].channel)};
            if(idx != InvalidChannelIndex)
                voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
            else if(DirectChannels == DirectMode::RemixMismatch)
            {
                auto match_channel = [chans,c](const InputRemixMap &map) noexcept -> bool
                { return chans[c].channel == map.channel; };
                auto remap = std::find_if(Device->RealOut.RemixMap.cbegin(),
                    Device->RealOut.RemixMap.cend(), match_channel);
                if(remap != Device->RealOut.RemixMap.cend())
                {
                    for(const auto &target : remap->targets)
                    {
                        idx = Device->channelIdxByName(target.channel);
                        if(idx != InvalidChannelIndex)
                            voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base *
                                target.mix;
                    }
                }
            }
        }

        /* Auxiliary sends still use normal channel panning since they mix to
         * B-Format, which can't channel-match.
         */
        for(size_t c{0};c < num_channels;c++)
        {
            /* Skip LFE */
            if(chans[c].channel == LFE)
                continue;

            const auto coeffs = CalcDirectionCoeffs(chans[c].pos, 0.0f);

            for(uint i{0};i < NumSends;i++)
            {
                if(const EffectSlot *Slot{SendSlots[i]})
                    ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                        voice->mChans[c].mWetParams[i].Gains.Target);
            }
        }
    }
    else if(Device->mRenderMode == RenderMode::Hrtf)
    {
        /* Full HRTF rendering. Skip the virtual channels and render to the
         * real outputs.
         */
        voice->mDirect.Buffer = Device->RealOut.Buffer;

        if(Distance > std::numeric_limits<float>::epsilon())
        {
            if(voice->mFmtChannels == FmtMono)
            {
                const float src_ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
                const float src_az{std::atan2(xpos, -zpos)};

                Device->mHrtf->getCoeffs(src_ev, src_az, Distance*NfcScale, Spread,
                    voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
                    voice->mChans[0].mDryParams.Hrtf.Target.Delay);
                voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain.Base;

                const auto coeffs = CalcDirectionCoeffs(std::array{xpos, ypos, zpos}, Spread);
                for(uint i{0};i < NumSends;i++)
                {
                    if(const EffectSlot *Slot{SendSlots[i]})
                        ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                            voice->mChans[0].mWetParams[i].Gains.Target);
                }
            }
            else for(size_t c{0};c < num_channels;c++)
            {
                using namespace al::numbers;

                /* Skip LFE */
                if(chans[c].channel == LFE) continue;

                /* Warp the channel position toward the source position as the
                 * source spread decreases. With no spread, all channels are at
                 * the source position, at full spread (pi*2), each channel is
                 * left unchanged.
                 */
                const float a{1.0f - (inv_pi_v<float>/2.0f)*Spread};
                std::array pos{
                    lerpf(chans[c].pos[0], xpos, a),
                    lerpf(chans[c].pos[1], ypos, a),
                    lerpf(chans[c].pos[2], zpos, a)};
                const float len{std::sqrt(pos[0]*pos[0] + pos[1]*pos[1] + pos[2]*pos[2])};
                if(len < 1.0f)
                {
                    pos[0] /= len;
                    pos[1] /= len;
                    pos[2] /= len;
                }

                const float ev{std::asin(clampf(pos[1], -1.0f, 1.0f))};
                const float az{std::atan2(pos[0], -pos[2])};

                Device->mHrtf->getCoeffs(ev, az, Distance*NfcScale, 0.0f,
                    voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
                    voice->mChans[c].mDryParams.Hrtf.Target.Delay);
                voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;

                const auto coeffs = CalcDirectionCoeffs(pos, 0.0f);
                for(uint i{0};i < NumSends;i++)
                {
                    if(const EffectSlot *Slot{SendSlots[i]})
                        ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                            voice->mChans[c].mWetParams[i].Gains.Target);
                }
            }
        }
        else
        {
            /* With no distance, spread is only meaningful for mono sources
             * where it can be 0 or full (non-mono sources are always full
             * spread here).
             */
            const float spread{Spread * (voice->mFmtChannels == FmtMono)};

            /* Local sources on HRTF play with each channel panned to its
             * relative location around the listener, providing "virtual
             * speaker" responses.
             */
            for(size_t c{0};c < num_channels;c++)
            {
                /* Skip LFE */
                if(chans[c].channel == LFE)
                    continue;

                /* Get the HRIR coefficients and delays for this channel
                 * position.
                 */
                const float ev{std::asin(chans[c].pos[1])};
                const float az{std::atan2(chans[c].pos[0], -chans[c].pos[2])};

                Device->mHrtf->getCoeffs(ev, az, std::numeric_limits<float>::infinity(), spread,
                    voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
                    voice->mChans[c].mDryParams.Hrtf.Target.Delay);
                voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;

                /* Normal panning for auxiliary sends. */
                const auto coeffs = CalcDirectionCoeffs(chans[c].pos, spread);

                for(uint i{0};i < NumSends;i++)
                {
                    if(const EffectSlot *Slot{SendSlots[i]})
                        ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                            voice->mChans[c].mWetParams[i].Gains.Target);
                }
            }
        }

        voice->mFlags.set(VoiceHasHrtf);
    }
    else
    {
        /* Non-HRTF rendering. Use normal panning to the output. */

        if(Distance > std::numeric_limits<float>::epsilon())
        {
            /* Calculate NFC filter coefficient if needed. */
            if(Device->AvgSpeakerDist > 0.0f)
            {
                /* Clamp the distance for really close sources, to prevent
                 * excessive bass.
                 */
                const float mdist{maxf(Distance*NfcScale, Device->AvgSpeakerDist/4.0f)};
                const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};

                /* Adjust NFC filters. */
                for(size_t c{0};c < num_channels;c++)
                    voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);

                voice->mFlags.set(VoiceHasNfc);
            }

            if(voice->mFmtChannels == FmtMono)
            {
                auto calc_coeffs = [xpos,ypos,zpos,Spread](RenderMode mode)
                {
                    if(mode != RenderMode::Pairwise)
                        return CalcDirectionCoeffs(std::array{xpos, ypos, zpos}, Spread);
                    const auto pos = ScaleAzimuthFront3_2(std::array{xpos, ypos, zpos});
                    return CalcDirectionCoeffs(pos, Spread);
                };
                const auto coeffs = calc_coeffs(Device->mRenderMode);

                ComputePanGains(&Device->Dry, coeffs, DryGain.Base,
                    voice->mChans[0].mDryParams.Gains.Target);
                for(uint i{0};i < NumSends;i++)
                {
                    if(const EffectSlot *Slot{SendSlots[i]})
                        ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                            voice->mChans[0].mWetParams[i].Gains.Target);
                }
            }
            else
            {
                using namespace al::numbers;

                for(size_t c{0};c < num_channels;c++)
                {
                    /* Special-case LFE */
                    if(chans[c].channel == LFE)
                    {
                        if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
                        {
                            const uint idx{Device->channelIdxByName(chans[c].channel)};
                            if(idx != InvalidChannelIndex)
                                voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
                        }
                        continue;
                    }

                    /* Warp the channel position toward the source position as
                     * the spread decreases. With no spread, all channels are
                     * at the source position, at full spread (pi*2), each
                     * channel position is left unchanged.
                     */
                    const float a{1.0f - (inv_pi_v<float>/2.0f)*Spread};
                    std::array pos{
                        lerpf(chans[c].pos[0], xpos, a),
                        lerpf(chans[c].pos[1], ypos, a),
                        lerpf(chans[c].pos[2], zpos, a)};
                    const float len{std::sqrt(pos[0]*pos[0] + pos[1]*pos[1] + pos[2]*pos[2])};
                    if(len < 1.0f)
                    {
                        pos[0] /= len;
                        pos[1] /= len;
                        pos[2] /= len;
                    }

                    if(Device->mRenderMode == RenderMode::Pairwise)
                        pos = ScaleAzimuthFront3(pos);
                    const auto coeffs = CalcDirectionCoeffs(pos, 0.0f);

                    ComputePanGains(&Device->Dry, coeffs, DryGain.Base,
                        voice->mChans[c].mDryParams.Gains.Target);
                    for(uint i{0};i < NumSends;i++)
                    {
                        if(const EffectSlot *Slot{SendSlots[i]})
                            ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                                voice->mChans[c].mWetParams[i].Gains.Target);
                    }
                }
            }
        }
        else
        {
            if(Device->AvgSpeakerDist > 0.0f)
            {
                /* If the source distance is 0, simulate a plane-wave by using
                 * infinite distance, which results in a w0 of 0.
                 */
                static constexpr float w0{0.0f};
                for(size_t c{0};c < num_channels;c++)
                    voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);

                voice->mFlags.set(VoiceHasNfc);
            }

            /* With no distance, spread is only meaningful for mono sources
             * where it can be 0 or full (non-mono sources are always full
             * spread here).
             */
            const float spread{Spread * (voice->mFmtChannels == FmtMono)};
            for(size_t c{0};c < num_channels;c++)
            {
                /* Special-case LFE */
                if(chans[c].channel == LFE)
                {
                    if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
                    {
                        const uint idx{Device->channelIdxByName(chans[c].channel)};
                        if(idx != InvalidChannelIndex)
                            voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
                    }
                    continue;
                }

                const auto coeffs = CalcDirectionCoeffs((Device->mRenderMode==RenderMode::Pairwise)
                    ? ScaleAzimuthFront3(chans[c].pos) : chans[c].pos, spread);

                ComputePanGains(&Device->Dry, coeffs, DryGain.Base,
                    voice->mChans[c].mDryParams.Gains.Target);
                for(uint i{0};i < NumSends;i++)
                {
                    if(const EffectSlot *Slot{SendSlots[i]})
                        ComputePanGains(&Slot->Wet, coeffs, WetGain[i].Base,
                            voice->mChans[c].mWetParams[i].Gains.Target);
                }
            }
        }
    }

    {
        const float hfNorm{props->Direct.HFReference / Frequency};
        const float lfNorm{props->Direct.LFReference / Frequency};

        voice->mDirect.FilterType = AF_None;
        if(DryGain.HF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
        if(DryGain.LF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;

        auto &lowpass = voice->mChans[0].mDryParams.LowPass;
        auto &highpass = voice->mChans[0].mDryParams.HighPass;
        lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, DryGain.HF, 1.0f);
        highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, DryGain.LF, 1.0f);
        for(size_t c{1};c < num_channels;c++)
        {
            voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
            voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
        }
    }
    for(uint i{0};i < NumSends;i++)
    {
        const float hfNorm{props->Send[i].HFReference / Frequency};
        const float lfNorm{props->Send[i].LFReference / Frequency};

        voice->mSend[i].FilterType = AF_None;
        if(WetGain[i].HF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
        if(WetGain[i].LF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;

        auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
        auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
        lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, WetGain[i].HF, 1.0f);
        highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, WetGain[i].LF, 1.0f);
        for(size_t c{1};c < num_channels;c++)
        {
            voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
            voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
        }
    }
}

void CalcNonAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
{
    DeviceBase *Device{context->mDevice};
    EffectSlot *SendSlots[MAX_SENDS];

    voice->mDirect.Buffer = Device->Dry.Buffer;
    for(uint i{0};i < Device->NumAuxSends;i++)
    {
        SendSlots[i] = props->Send[i].Slot;
        if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
        {
            SendSlots[i] = nullptr;
            voice->mSend[i].Buffer = {};
        }
        else
            voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
    }

    /* Calculate the stepping value */
    const auto Pitch = static_cast<float>(voice->mFrequency) /
        static_cast<float>(Device->Frequency) * props->Pitch;
    if(Pitch > float{MaxPitch})
        voice->mStep = MaxPitch<<MixerFracBits;
    else
        voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
    voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);

    /* Calculate gains */
    GainTriplet DryGain;
    DryGain.Base  = minf(clampf(props->Gain, props->MinGain, props->MaxGain) * props->Direct.Gain *
        context->mParams.Gain, GainMixMax);
    DryGain.HF = props->Direct.GainHF;
    DryGain.LF = props->Direct.GainLF;
    GainTriplet WetGain[MAX_SENDS];
    for(uint i{0};i < Device->NumAuxSends;i++)
    {
        WetGain[i].Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) *
            props->Send[i].Gain * context->mParams.Gain, GainMixMax);
        WetGain[i].HF = props->Send[i].GainHF;
        WetGain[i].LF = props->Send[i].GainLF;
    }

    CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, WetGain, SendSlots, props,
        context->mParams, Device);
}

void CalcAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
{
    DeviceBase *Device{context->mDevice};
    const uint NumSends{Device->NumAuxSends};

    /* Set mixing buffers and get send parameters. */
    voice->mDirect.Buffer = Device->Dry.Buffer;
    EffectSlot *SendSlots[MAX_SENDS];
    uint UseDryAttnForRoom{0};
    for(uint i{0};i < NumSends;i++)
    {
        SendSlots[i] = props->Send[i].Slot;
        if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
            SendSlots[i] = nullptr;
        else if(!SendSlots[i]->AuxSendAuto)
        {
            /* If the slot's auxiliary send auto is off, the data sent to the
             * effect slot is the same as the dry path, sans filter effects.
             */
            UseDryAttnForRoom |= 1u<<i;
        }

        if(!SendSlots[i])
            voice->mSend[i].Buffer = {};
        else
            voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
    }

    /* Transform source to listener space (convert to head relative) */
    alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
    alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
    alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
    if(!props->HeadRelative)
    {
        /* Transform source vectors */
        Position = context->mParams.Matrix * (Position - context->mParams.Position);
        Velocity = context->mParams.Matrix * Velocity;
        Direction = context->mParams.Matrix * Direction;
    }
    else
    {
        /* Offset the source velocity to be relative of the listener velocity */
        Velocity += context->mParams.Velocity;
    }

    const bool directional{Direction.normalize() > 0.0f};
    alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
    const float Distance{ToSource.normalize()};

    /* Calculate distance attenuation */
    float ClampedDist{Distance};
    float DryGainBase{props->Gain};
    float WetGainBase{props->Gain};

    switch(context->mParams.SourceDistanceModel ? props->mDistanceModel
        : context->mParams.mDistanceModel)
    {
        case DistanceModel::InverseClamped:
            if(props->MaxDistance < props->RefDistance) break;
            ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
            /*fall-through*/
        case DistanceModel::Inverse:
            if(props->RefDistance > 0.0f)
            {
                float dist{lerpf(props->RefDistance, ClampedDist, props->RolloffFactor)};
                if(dist > 0.0f) DryGainBase *= props->RefDistance / dist;

                dist = lerpf(props->RefDistance, ClampedDist, props->RoomRolloffFactor);
                if(dist > 0.0f) WetGainBase *= props->RefDistance / dist;
            }
            break;

        case DistanceModel::LinearClamped:
            if(props->MaxDistance < props->RefDistance) break;
            ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
            /*fall-through*/
        case DistanceModel::Linear:
            if(props->MaxDistance != props->RefDistance)
            {
                float attn{(ClampedDist-props->RefDistance) /
                    (props->MaxDistance-props->RefDistance) * props->RolloffFactor};
                DryGainBase *= maxf(1.0f - attn, 0.0f);

                attn = (ClampedDist-props->RefDistance) /
                    (props->MaxDistance-props->RefDistance) * props->RoomRolloffFactor;
                WetGainBase *= maxf(1.0f - attn, 0.0f);
            }
            break;

        case DistanceModel::ExponentClamped:
            if(props->MaxDistance < props->RefDistance) break;
            ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
            /*fall-through*/
        case DistanceModel::Exponent:
            if(ClampedDist > 0.0f && props->RefDistance > 0.0f)
            {
                const float dist_ratio{ClampedDist/props->RefDistance};
                DryGainBase *= std::pow(dist_ratio, -props->RolloffFactor);
                WetGainBase *= std::pow(dist_ratio, -props->RoomRolloffFactor);
            }
            break;

        case DistanceModel::Disable:
            break;
    }

    /* Calculate directional soundcones */
    float ConeHF{1.0f}, WetConeHF{1.0f};
    if(directional && props->InnerAngle < 360.0f)
    {
        static constexpr float Rad2Deg{static_cast<float>(180.0 / al::numbers::pi)};
        const float Angle{Rad2Deg*2.0f * std::acos(-Direction.dot_product(ToSource)) * ConeScale};

        float ConeGain{1.0f};
        if(Angle >= props->OuterAngle)
        {
            ConeGain = props->OuterGain;
            ConeHF = lerpf(1.0f, props->OuterGainHF, props->DryGainHFAuto);
        }
        else if(Angle >= props->InnerAngle)
        {
            const float scale{(Angle-props->InnerAngle) / (props->OuterAngle-props->InnerAngle)};
            ConeGain = lerpf(1.0f, props->OuterGain, scale);
            ConeHF = lerpf(1.0f, props->OuterGainHF, scale * props->DryGainHFAuto);
        }

        DryGainBase *= ConeGain;
        WetGainBase *= lerpf(1.0f, ConeGain, props->WetGainAuto);

        WetConeHF = lerpf(1.0f, ConeHF, props->WetGainHFAuto);
    }

    /* Apply gain and frequency filters */
    DryGainBase = clampf(DryGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
    WetGainBase = clampf(WetGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;

    GainTriplet DryGain{};
    DryGain.Base = minf(DryGainBase * props->Direct.Gain, GainMixMax);
    DryGain.HF = ConeHF * props->Direct.GainHF;
    DryGain.LF = props->Direct.GainLF;
    GainTriplet WetGain[MAX_SENDS]{};
    for(uint i{0};i < NumSends;i++)
    {
        /* If this effect slot's Auxiliary Send Auto is off, then use the dry
         * path distance and cone attenuation, otherwise use the wet (room)
         * path distance and cone attenuation. The send filter is used instead
         * of the direct filter, regardless.
         */
        const bool use_room{!(UseDryAttnForRoom&(1u<<i))};
        const float gain{use_room ? WetGainBase : DryGainBase};
        WetGain[i].Base = minf(gain * props->Send[i].Gain, GainMixMax);
        WetGain[i].HF = (use_room ? WetConeHF : ConeHF) * props->Send[i].GainHF;
        WetGain[i].LF = props->Send[i].GainLF;
    }

    /* Distance-based air absorption and initial send decay. */
    if(Distance > props->RefDistance) LIKELY
    {
        const float distance_base{(Distance-props->RefDistance) * props->RolloffFactor};
        const float distance_meters{distance_base * context->mParams.MetersPerUnit};
        const float dryabsorb{distance_meters * props->AirAbsorptionFactor};
        if(dryabsorb > std::numeric_limits<float>::epsilon())
            DryGain.HF *= std::pow(context->mParams.AirAbsorptionGainHF, dryabsorb);

        /* If the source's Auxiliary Send Filter Gain Auto is off, no extra
         * adjustment is applied to the send gains.
         */
        for(uint i{props->WetGainAuto ? 0u : NumSends};i < NumSends;++i)
        {
            if(!SendSlots[i] || !(SendSlots[i]->DecayTime > 0.0f))
                continue;

            auto calc_attenuation = [](float distance, float refdist, float rolloff) noexcept
            {
                const float dist{lerpf(refdist, distance, rolloff)};
                if(dist > refdist) return refdist / dist;
                return 1.0f;
            };

            /* The reverb effect's room rolloff factor always applies to an
             * inverse distance rolloff model.
             */
            WetGain[i].Base *= calc_attenuation(Distance, props->RefDistance,
                SendSlots[i]->RoomRolloff);

            if(distance_meters > std::numeric_limits<float>::epsilon())
                WetGain[i].HF *= std::pow(SendSlots[i]->AirAbsorptionGainHF, distance_meters);

            /* If this effect slot's Auxiliary Send Auto is off, don't apply
             * the automatic initial reverb decay (should the reverb's room
             * rolloff still apply?).
             */
            if(!SendSlots[i]->AuxSendAuto)
                continue;

            GainTriplet DecayDistance;
            /* Calculate the distances to where this effect's decay reaches
             * -60dB.
             */
            DecayDistance.Base = SendSlots[i]->DecayTime * SpeedOfSoundMetersPerSec;
            DecayDistance.LF = DecayDistance.Base * SendSlots[i]->DecayLFRatio;
            DecayDistance.HF = DecayDistance.Base * SendSlots[i]->DecayHFRatio;
            if(SendSlots[i]->DecayHFLimit)
            {
                const float airAbsorption{SendSlots[i]->AirAbsorptionGainHF};
                if(airAbsorption < 1.0f)
                {
                    /* Calculate the distance to where this effect's air
                     * absorption reaches -60dB, and limit the effect's HF
                     * decay distance (so it doesn't take any longer to decay
                     * than the air would allow).
                     */
                    static constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
                    const float absorb_dist{log10_decaygain / std::log10(airAbsorption)};
                    DecayDistance.HF = minf(absorb_dist, DecayDistance.HF);
                }
            }

            const float baseAttn = calc_attenuation(Distance, props->RefDistance,
                props->RolloffFactor);

            /* Apply a decay-time transformation to the wet path, based on the
             * source distance. The initial decay of the reverb effect is
             * calculated and applied to the wet path.
             */
            const float fact{distance_base / DecayDistance.Base};
            const float gain{std::pow(ReverbDecayGain, fact)*(1.0f-baseAttn) + baseAttn};
            WetGain[i].Base *= gain;

            if(gain > 0.0f)
            {
                const float hffact{distance_base / DecayDistance.HF};
                const float gainhf{std::pow(ReverbDecayGain, hffact)*(1.0f-baseAttn) + baseAttn};
                WetGain[i].HF *= minf(gainhf/gain, 1.0f);
                const float lffact{distance_base / DecayDistance.LF};
                const float gainlf{std::pow(ReverbDecayGain, lffact)*(1.0f-baseAttn) + baseAttn};
                WetGain[i].LF *= minf(gainlf/gain, 1.0f);
            }
        }
    }


    /* Initial source pitch */
    float Pitch{props->Pitch};

    /* Calculate velocity-based doppler effect */
    float DopplerFactor{props->DopplerFactor * context->mParams.DopplerFactor};
    if(DopplerFactor > 0.0f)
    {
        const alu::Vector &lvelocity = context->mParams.Velocity;
        float vss{Velocity.dot_product(ToSource) * -DopplerFactor};
        float vls{lvelocity.dot_product(ToSource) * -DopplerFactor};

        const float SpeedOfSound{context->mParams.SpeedOfSound};
        if(!(vls < SpeedOfSound))
        {
            /* Listener moving away from the source at the speed of sound.
             * Sound waves can't catch it.
             */
            Pitch = 0.0f;
        }
        else if(!(vss < SpeedOfSound))
        {
            /* Source moving toward the listener at the speed of sound. Sound
             * waves bunch up to extreme frequencies.
             */
            Pitch = std::numeric_limits<float>::infinity();
        }
        else
        {
            /* Source and listener movement is nominal. Calculate the proper
             * doppler shift.
             */
            Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
        }
    }

    /* Adjust pitch based on the buffer and output frequencies, and calculate
     * fixed-point stepping value.
     */
    Pitch *= static_cast<float>(voice->mFrequency) / static_cast<float>(Device->Frequency);
    if(Pitch > float{MaxPitch})
        voice->mStep = MaxPitch<<MixerFracBits;
    else
        voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
    voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);

    float spread{0.0f};
    if(props->Radius > Distance)
        spread = al::numbers::pi_v<float>*2.0f - Distance/props->Radius*al::numbers::pi_v<float>;
    else if(Distance > 0.0f)
        spread = std::asin(props->Radius/Distance) * 2.0f;

    CalcPanningAndFilters(voice, ToSource[0]*XScale, ToSource[1]*YScale, ToSource[2]*ZScale,
        Distance, spread, DryGain, WetGain, SendSlots, props, context->mParams, Device);
}

void CalcSourceParams(Voice *voice, ContextBase *context, bool force)
{
    VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
    if(!props && !force) return;

    if(props)
    {
        voice->mProps = *props;

        AtomicReplaceHead(context->mFreeVoiceProps, props);
    }

    if((voice->mProps.DirectChannels != DirectMode::Off && voice->mFmtChannels != FmtMono
            && !IsAmbisonic(voice->mFmtChannels))
        || voice->mProps.mSpatializeMode == SpatializeMode::Off
        || (voice->mProps.mSpatializeMode==SpatializeMode::Auto && voice->mFmtChannels != FmtMono))
        CalcNonAttnSourceParams(voice, &voice->mProps, context);
    else
        CalcAttnSourceParams(voice, &voice->mProps, context);
}


void SendSourceStateEvent(ContextBase *context, uint id, VChangeState state)
{
    RingBuffer *ring{context->mAsyncEvents.get()};
    auto evt_vec = ring->getWriteVector();
    if(evt_vec.first.len < 1) return;

    auto &evt = InitAsyncEvent<AsyncSourceStateEvent>(evt_vec.first.buf);
    evt.mId = id;
    switch(state)
    {
    case VChangeState::Reset:
        evt.mState = AsyncSrcState::Reset;
        break;
    case VChangeState::Stop:
        evt.mState = AsyncSrcState::Stop;
        break;
    case VChangeState::Play:
        evt.mState = AsyncSrcState::Play;
        break;
    case VChangeState::Pause:
        evt.mState = AsyncSrcState::Pause;
        break;
    /* Shouldn't happen. */
    case VChangeState::Restart:
        al::unreachable();
    }

    ring->writeAdvance(1);
}

void ProcessVoiceChanges(ContextBase *ctx)
{
    VoiceChange *cur{ctx->mCurrentVoiceChange.load(std::memory_order_acquire)};
    VoiceChange *next{cur->mNext.load(std::memory_order_acquire)};
    if(!next) return;

    const auto enabledevt = ctx->mEnabledEvts.load(std::memory_order_acquire);
    do {
        cur = next;

        bool sendevt{false};
        if(cur->mState == VChangeState::Reset || cur->mState == VChangeState::Stop)
        {
            if(Voice *voice{cur->mVoice})
            {
                voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
                voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
                /* A source ID indicates the voice was playing or paused, which
                 * gets a reset/stop event.
                 */
                sendevt = voice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u;
                Voice::State oldvstate{Voice::Playing};
                voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
                    std::memory_order_relaxed, std::memory_order_acquire);
                voice->mPendingChange.store(false, std::memory_order_release);
            }
            /* Reset state change events are always sent, even if the voice is
             * already stopped or even if there is no voice.
             */
            sendevt |= (cur->mState == VChangeState::Reset);
        }
        else if(cur->mState == VChangeState::Pause)
        {
            Voice *voice{cur->mVoice};
            Voice::State oldvstate{Voice::Playing};
            sendevt = voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
                std::memory_order_release, std::memory_order_acquire);
        }
        else if(cur->mState == VChangeState::Play)
        {
            /* NOTE: When playing a voice, sending a source state change event
             * depends if there's an old voice to stop and if that stop is
             * successful. If there is no old voice, a playing event is always
             * sent. If there is an old voice, an event is sent only if the
             * voice is already stopped.
             */
            if(Voice *oldvoice{cur->mOldVoice})
            {
                oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
                oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
                oldvoice->mSourceID.store(0u, std::memory_order_relaxed);
                Voice::State oldvstate{Voice::Playing};
                sendevt = !oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
                    std::memory_order_relaxed, std::memory_order_acquire);
                oldvoice->mPendingChange.store(false, std::memory_order_release);
            }
            else
                sendevt = true;

            Voice *voice{cur->mVoice};
            voice->mPlayState.store(Voice::Playing, std::memory_order_release);
        }
        else if(cur->mState == VChangeState::Restart)
        {
            /* Restarting a voice never sends a source change event. */
            Voice *oldvoice{cur->mOldVoice};
            oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
            oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
            /* If there's no sourceID, the old voice finished so don't start
             * the new one at its new offset.
             */
            if(oldvoice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u)
            {
                /* Otherwise, set the voice to stopping if it's not already (it
                 * might already be, if paused), and play the new voice as
                 * appropriate.
                 */
                Voice::State oldvstate{Voice::Playing};
                oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
                    std::memory_order_relaxed, std::memory_order_acquire);

                Voice *voice{cur->mVoice};
                voice->mPlayState.store((oldvstate == Voice::Playing) ? Voice::Playing
                    : Voice::Stopped, std::memory_order_release);
            }
            oldvoice->mPendingChange.store(false, std::memory_order_release);
        }
        if(sendevt && enabledevt.test(al::to_underlying(AsyncEnableBits::SourceState)))
            SendSourceStateEvent(ctx, cur->mSourceID, cur->mState);

        next = cur->mNext.load(std::memory_order_acquire);
    } while(next);
    ctx->mCurrentVoiceChange.store(cur, std::memory_order_release);
}

void ProcessParamUpdates(ContextBase *ctx, const EffectSlotArray &slots,
    const al::span<Voice*> voices)
{
    ProcessVoiceChanges(ctx);

    IncrementRef(ctx->mUpdateCount);
    if(!ctx->mHoldUpdates.load(std::memory_order_acquire)) LIKELY
    {
        bool force{CalcContextParams(ctx)};
        auto sorted_slots = const_cast<EffectSlot**>(slots.data() + slots.size());
        for(EffectSlot *slot : slots)
            force |= CalcEffectSlotParams(slot, sorted_slots, ctx);

        for(Voice *voice : voices)
        {
            /* Only update voices that have a source. */
            if(voice->mSourceID.load(std::memory_order_relaxed) != 0)
                CalcSourceParams(voice, ctx, force);
        }
    }
    IncrementRef(ctx->mUpdateCount);
}

void ProcessContexts(DeviceBase *device, const uint SamplesToDo)
{
    ASSUME(SamplesToDo > 0);

    const nanoseconds curtime{device->mClockBase.load(std::memory_order_relaxed) +
        nanoseconds{seconds{device->mSamplesDone.load(std::memory_order_relaxed)}}/
        device->Frequency};

    for(ContextBase *ctx : *device->mContexts.load(std::memory_order_acquire))
    {
        const EffectSlotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
        const al::span<Voice*> voices{ctx->getVoicesSpanAcquired()};

        /* Process pending property updates for objects on the context. */
        ProcessParamUpdates(ctx, auxslots, voices);

        /* Clear auxiliary effect slot mixing buffers. */
        for(EffectSlot *slot : auxslots)
        {
            for(auto &buffer : slot->Wet.Buffer)
                buffer.fill(0.0f);
        }

        /* Process voices that have a playing source. */
        for(Voice *voice : voices)
        {
            const Voice::State vstate{voice->mPlayState.load(std::memory_order_acquire)};
            if(vstate != Voice::Stopped && vstate != Voice::Pending)
                voice->mix(vstate, ctx, curtime, SamplesToDo);
        }

        /* Process effects. */
        if(const size_t num_slots{auxslots.size()})
        {
            auto slots = auxslots.data();
            auto slots_end = slots + num_slots;

            /* Sort the slots into extra storage, so that effect slots come
             * before their effect slot target (or their targets' target).
             */
            const al::span<EffectSlot*> sorted_slots{const_cast<EffectSlot**>(slots_end),
                num_slots};
            /* Skip sorting if it has already been done. */
            if(!sorted_slots[0])
            {
                /* First, copy the slots to the sorted list, then partition the
                 * sorted list so that all slots without a target slot go to
                 * the end.
                 */
                std::copy(slots, slots_end, sorted_slots.begin());
                auto split_point = std::partition(sorted_slots.begin(), sorted_slots.end(),
                    [](const EffectSlot *slot) noexcept -> bool
                    { return slot->Target != nullptr; });
                /* There must be at least one slot without a slot target. */
                assert(split_point != sorted_slots.end());

                /* Simple case: no more than 1 slot has a target slot. Either
                 * all slots go right to the output, or the remaining one must
                 * target an already-partitioned slot.
                 */
                if(split_point - sorted_slots.begin() > 1)
                {
                    /* At least two slots target other slots. Starting from the
                     * back of the sorted list, continue partitioning the front
                     * of the list given each target until all targets are
                     * accounted for. This ensures all slots without a target
                     * go last, all slots directly targeting those last slots
                     * go second-to-last, all slots directly targeting those
                     * second-last slots go third-to-last, etc.
                     */
                    auto next_target = sorted_slots.end();
                    do {
                        /* This shouldn't happen, but if there's unsorted slots
                         * left that don't target any sorted slots, they can't
                         * contribute to the output, so leave them.
                         */
                        if(next_target == split_point) UNLIKELY
                            break;

                        --next_target;
                        split_point = std::partition(sorted_slots.begin(), split_point,
                            [next_target](const EffectSlot *slot) noexcept -> bool
                            { return slot->Target != *next_target; });
                    } while(split_point - sorted_slots.begin() > 1);
                }
            }

            for(const EffectSlot *slot : sorted_slots)
            {
                EffectState *state{slot->mEffectState.get()};
                state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
            }
        }

        /* Signal the event handler if there are any events to read. */
        RingBuffer *ring{ctx->mAsyncEvents.get()};
        if(ring->readSpace() > 0)
            ctx->mEventSem.post();
    }
}


void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const size_t SamplesToDo,
    const DistanceComp::ChanData *distcomp)
{
    ASSUME(SamplesToDo > 0);

    for(auto &chanbuffer : Samples)
    {
        const float gain{distcomp->Gain};
        const size_t base{distcomp->Length};
        float *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
        ++distcomp;

        if(base < 1)
            continue;

        float *inout{al::assume_aligned<16>(chanbuffer.data())};
        auto inout_end = inout + SamplesToDo;
        if(SamplesToDo >= base) LIKELY
        {
            auto delay_end = std::rotate(inout, inout_end - base, inout_end);
            std::swap_ranges(inout, delay_end, distbuf);
        }
        else
        {
            auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
            std::rotate(distbuf, delay_start, distbuf + base);
        }
        std::transform(inout, inout_end, inout, [gain](float s) { return s * gain; });
    }
}

void ApplyDither(const al::span<FloatBufferLine> Samples, uint *dither_seed,
    const float quant_scale, const size_t SamplesToDo)
{
    ASSUME(SamplesToDo > 0);

    /* Dithering. Generate whitenoise (uniform distribution of random values
     * between -1 and +1) and add it to the sample values, after scaling up to
     * the desired quantization depth amd before rounding.
     */
    const float invscale{1.0f / quant_scale};
    uint seed{*dither_seed};
    auto dither_sample = [&seed,invscale,quant_scale](const float sample) noexcept -> float
    {
        float val{sample * quant_scale};
        uint rng0{dither_rng(&seed)};
        uint rng1{dither_rng(&seed)};
        val += static_cast<float>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
        return fast_roundf(val) * invscale;
    };
    for(FloatBufferLine &inout : Samples)
        std::transform(inout.begin(), inout.begin()+SamplesToDo, inout.begin(), dither_sample);
    *dither_seed = seed;
}


/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
 * chokes on that given the inline specializations.
 */
template<typename T>
inline T SampleConv(float) noexcept;

template<> inline float SampleConv(float val) noexcept
{ return val; }
template<> inline int32_t SampleConv(float val) noexcept
{
    /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
     * This means a normalized float has at most 25 bits of signed precision.
     * When scaling and clamping for a signed 32-bit integer, these following
     * values are the best a float can give.
     */
    return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
}
template<> inline int16_t SampleConv(float val) noexcept
{ return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
template<> inline int8_t SampleConv(float val) noexcept
{ return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }

/* Define unsigned output variations. */
template<> inline uint32_t SampleConv(float val) noexcept
{ return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; }
template<> inline uint16_t SampleConv(float val) noexcept
{ return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); }
template<> inline uint8_t SampleConv(float val) noexcept
{ return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); }

template<DevFmtType T>
void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset,
    const size_t SamplesToDo, const size_t FrameStep)
{
    ASSUME(FrameStep > 0);
    ASSUME(SamplesToDo > 0);

    DevFmtType_t<T> *outbase{static_cast<DevFmtType_t<T>*>(OutBuffer) + Offset*FrameStep};
    size_t c{0};
    for(const FloatBufferLine &inbuf : InBuffer)
    {
        DevFmtType_t<T> *out{outbase++};
        auto conv_sample = [FrameStep,&out](const float s) noexcept -> void
        {
            *out = SampleConv<DevFmtType_t<T>>(s);
            out += FrameStep;
        };
        std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
        ++c;
    }
    if(const size_t extra{FrameStep - c})
    {
        const auto silence = SampleConv<DevFmtType_t<T>>(0.0f);
        for(size_t i{0};i < SamplesToDo;++i)
        {
            std::fill_n(outbase, extra, silence);
            outbase += FrameStep;
        }
    }
}

} // namespace

uint DeviceBase::renderSamples(const uint numSamples)
{
    const uint samplesToDo{minu(numSamples, BufferLineSize)};

    /* Clear main mixing buffers. */
    for(FloatBufferLine &buffer : MixBuffer)
        buffer.fill(0.0f);

    /* Increment the mix count at the start (lsb should now be 1). */
    const auto mixCount = MixCount.load(std::memory_order_relaxed);
    MixCount.store(mixCount+1, std::memory_order_relaxed);
    std::atomic_thread_fence(std::memory_order_release);

    /* Process and mix each context's sources and effects. */
    ProcessContexts(this, samplesToDo);

    /* Increment the clock time. Every second's worth of samples is converted
     * and added to clock base so that large sample counts don't overflow
     * during conversion. This also guarantees a stable conversion.
     */
    {
        auto samplesDone = mSamplesDone.load(std::memory_order_relaxed) + samplesToDo;
        auto clockBase = mClockBase.load(std::memory_order_relaxed) +
            std::chrono::seconds{samplesDone/Frequency};
        mSamplesDone.store(samplesDone%Frequency, std::memory_order_relaxed);
        mClockBase.store(clockBase, std::memory_order_relaxed);
    }

    /* Increment the mix count at the end (lsb should now be 0). */
    MixCount.store(mixCount+2, std::memory_order_release);

    /* Apply any needed post-process for finalizing the Dry mix to the RealOut
     * (Ambisonic decode, UHJ encode, etc).
     */
    postProcess(samplesToDo);

    /* Apply compression, limiting sample amplitude if needed or desired. */
    if(Limiter) Limiter->process(samplesToDo, RealOut.Buffer.data());

    /* Apply delays and attenuation for mismatched speaker distances. */
    if(ChannelDelays)
        ApplyDistanceComp(RealOut.Buffer, samplesToDo, ChannelDelays->mChannels.data());

    /* Apply dithering. The compressor should have left enough headroom for the
     * dither noise to not saturate.
     */
    if(DitherDepth > 0.0f)
        ApplyDither(RealOut.Buffer, &DitherSeed, DitherDepth, samplesToDo);

    return samplesToDo;
}

void DeviceBase::renderSamples(const al::span<float*> outBuffers, const uint numSamples)
{
    FPUCtl mixer_mode{};
    uint total{0};
    while(const uint todo{numSamples - total})
    {
        const uint samplesToDo{renderSamples(todo)};

        auto *srcbuf = RealOut.Buffer.data();
        for(auto *dstbuf : outBuffers)
        {
            std::copy_n(srcbuf->data(), samplesToDo, dstbuf + total);
            ++srcbuf;
        }

        total += samplesToDo;
    }
}

void DeviceBase::renderSamples(void *outBuffer, const uint numSamples, const size_t frameStep)
{
    FPUCtl mixer_mode{};
    uint total{0};
    while(const uint todo{numSamples - total})
    {
        const uint samplesToDo{renderSamples(todo)};

        if(outBuffer) LIKELY
        {
            /* Finally, interleave and convert samples, writing to the device's
             * output buffer.
             */
            switch(FmtType)
            {
#define HANDLE_WRITE(T) case T:                                               \
    Write<T>(RealOut.Buffer, outBuffer, total, samplesToDo, frameStep); break;
            HANDLE_WRITE(DevFmtByte)
            HANDLE_WRITE(DevFmtUByte)
            HANDLE_WRITE(DevFmtShort)
            HANDLE_WRITE(DevFmtUShort)
            HANDLE_WRITE(DevFmtInt)
            HANDLE_WRITE(DevFmtUInt)
            HANDLE_WRITE(DevFmtFloat)
#undef HANDLE_WRITE
            }
        }

        total += samplesToDo;
    }
}

void DeviceBase::handleDisconnect(const char *msg, ...)
{
    const auto mixCount = MixCount.load(std::memory_order_relaxed);
    MixCount.store(mixCount+1, std::memory_order_relaxed);
    std::atomic_thread_fence(std::memory_order_release);

    if(Connected.exchange(false, std::memory_order_acq_rel))
    {
        AsyncEvent evt{std::in_place_type<AsyncDisconnectEvent>};
        auto &disconnect = std::get<AsyncDisconnectEvent>(evt);

        va_list args;
        va_start(args, msg);
        int msglen{vsnprintf(disconnect.msg, sizeof(disconnect.msg), msg, args)};
        va_end(args);

        if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(disconnect.msg))
            disconnect.msg[sizeof(disconnect.msg)-1] = 0;

        for(ContextBase *ctx : *mContexts.load())
        {
            RingBuffer *ring{ctx->mAsyncEvents.get()};
            auto evt_data = ring->getWriteVector().first;
            if(evt_data.len > 0)
            {
                al::construct_at(reinterpret_cast<AsyncEvent*>(evt_data.buf), evt);
                ring->writeAdvance(1);
                ctx->mEventSem.post();
            }

            if(!ctx->mStopVoicesOnDisconnect)
            {
                ProcessVoiceChanges(ctx);
                continue;
            }

            auto voicelist = ctx->getVoicesSpanAcquired();
            auto stop_voice = [](Voice *voice) -> void
            {
                voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
                voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
                voice->mSourceID.store(0u, std::memory_order_relaxed);
                voice->mPlayState.store(Voice::Stopped, std::memory_order_release);
            };
            std::for_each(voicelist.begin(), voicelist.end(), stop_voice);
        }
    }

    MixCount.store(mixCount+2, std::memory_order_release);
}