1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
#include "config.h"
#include <algorithm>
#include <array>
#include <complex>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>
#ifdef HAVE_SSE_INTRINSICS
#include <xmmintrin.h>
#elif defined(HAVE_NEON)
#include <arm_neon.h>
#endif
#include "alcomplex.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "base.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/buffer_storage.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/filters/splitter.h"
#include "core/fmt_traits.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
#include "pffft.h"
#include "polyphase_resampler.h"
#include "vector.h"
namespace {
/* Convolution is implemented using a segmented overlap-add method. The impulse
* response is split into multiple segments of 128 samples, and each segment
* has an FFT applied with a 256-sample buffer (the latter half left silent) to
* get its frequency-domain response. The resulting response has its positive/
* non-mirrored frequencies saved (129 bins) in each segment. Note that since
* the 0- and half-frequency bins are real for a real signal, their imaginary
* components are always 0 and can be dropped, allowing their real components
* to be combined so only 128 complex values are stored for the 129 bins.
*
* Input samples are similarly broken up into 128-sample segments, with a 256-
* sample FFT applied to each new incoming segment to get its 129 bins. A
* history of FFT'd input segments is maintained, equal to the number of
* impulse response segments.
*
* To apply the convolution, each impulse response segment is convolved with
* its paired input segment (using complex multiplies, far cheaper than FIRs),
* accumulating into a 129-bin FFT buffer. The input history is then shifted to
* align with later impulse response segments for the next input segment.
*
* An inverse FFT is then applied to the accumulated FFT buffer to get a 256-
* sample time-domain response for output, which is split in two halves. The
* first half is the 128-sample output, and the second half is a 128-sample
* (really, 127) delayed extension, which gets added to the output next time.
* Convolving two time-domain responses of length N results in a time-domain
* signal of length N*2 - 1, and this holds true regardless of the convolution
* being applied in the frequency domain, so these "overflow" samples need to
* be accounted for.
*
* To avoid a delay with gathering enough input samples for the FFT, the first
* segment is applied directly in the time-domain as the samples come in. Once
* enough have been retrieved, the FFT is applied on the input and it's paired
* with the remaining (FFT'd) filter segments for processing.
*/
void LoadSamples(float *RESTRICT dst, const std::byte *src, const size_t srcstep, FmtType srctype,
const size_t samples) noexcept
{
#define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
switch(srctype)
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
HANDLE_FMT(FmtInt);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
HANDLE_FMT(FmtAlaw);
/* FIXME: Handle ADPCM decoding here. */
case FmtIMA4:
case FmtMSADPCM:
std::fill_n(dst, samples, 0.0f);
break;
}
#undef HANDLE_FMT
}
constexpr auto GetAmbiScales(AmbiScaling scaletype) noexcept
{
switch(scaletype)
{
case AmbiScaling::FuMa: return al::span{AmbiScale::FromFuMa};
case AmbiScaling::SN3D: return al::span{AmbiScale::FromSN3D};
case AmbiScaling::UHJ: return al::span{AmbiScale::FromUHJ};
case AmbiScaling::N3D: break;
}
return al::span{AmbiScale::FromN3D};
}
constexpr auto GetAmbiLayout(AmbiLayout layouttype) noexcept
{
if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa};
return al::span{AmbiIndex::FromACN};
}
constexpr auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept
{
if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa2D};
return al::span{AmbiIndex::FromACN2D};
}
constexpr float sin30{0.5f};
constexpr float cos30{0.866025403785f};
constexpr float sin45{al::numbers::sqrt2_v<float>*0.5f};
constexpr float cos45{al::numbers::sqrt2_v<float>*0.5f};
constexpr float sin110{ 0.939692620786f};
constexpr float cos110{-0.342020143326f};
struct ChanPosMap {
Channel channel;
std::array<float,3> pos;
};
using complex_f = std::complex<float>;
constexpr size_t ConvolveUpdateSize{256};
constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *RESTRICT filter)
{
#ifdef HAVE_SSE_INTRINSICS
for(float &output : dst)
{
__m128 r4{_mm_setzero_ps()};
for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
{
const __m128 coeffs{_mm_load_ps(&filter[j])};
const __m128 s{_mm_loadu_ps(&src[j])};
r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
}
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
output = _mm_cvtss_f32(r4);
++src;
}
#elif defined(HAVE_NEON)
for(float &output : dst)
{
float32x4_t r4{vdupq_n_f32(0.0f)};
for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
r4 = vmlaq_f32(r4, vld1q_f32(&src[j]), vld1q_f32(&filter[j]));
r4 = vaddq_f32(r4, vrev64q_f32(r4));
output = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
++src;
}
#else
for(float &output : dst)
{
float ret{0.0f};
for(size_t j{0};j < ConvolveUpdateSamples;++j)
ret += src[j] * filter[j];
output = ret;
++src;
}
#endif
}
struct ConvolutionState final : public EffectState {
FmtChannels mChannels{};
AmbiLayout mAmbiLayout{};
AmbiScaling mAmbiScaling{};
uint mAmbiOrder{};
size_t mFifoPos{0};
alignas(16) std::array<float,ConvolveUpdateSamples*2> mInput{};
al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter;
al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput;
PFFFTSetup mFft{};
alignas(16) std::array<float,ConvolveUpdateSize> mFftBuffer{};
alignas(16) std::array<float,ConvolveUpdateSize> mFftWorkBuffer{};
size_t mCurrentSegment{0};
size_t mNumConvolveSegs{0};
struct ChannelData {
alignas(16) FloatBufferLine mBuffer{};
float mHfScale{}, mLfScale{};
BandSplitter mFilter{};
std::array<float,MaxOutputChannels> Current{};
std::array<float,MaxOutputChannels> Target{};
};
std::vector<ChannelData> mChans;
al::vector<float,16> mComplexData;
ConvolutionState() = default;
~ConvolutionState() override = default;
void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t)
{&ConvolutionState::NormalMix};
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) override;
};
void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
for(auto &chan : mChans)
MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current.data(),
chan.Target.data(), samplesToDo, 0);
}
void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
for(auto &chan : mChans)
{
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale);
MixSamples(src, samplesOut, chan.Current.data(), chan.Target.data(), samplesToDo, 0);
}
}
void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorage *buffer)
{
using UhjDecoderType = UhjDecoder<512>;
static constexpr auto DecoderPadding = UhjDecoderType::sInputPadding;
static constexpr uint MaxConvolveAmbiOrder{1u};
if(!mFft)
mFft = PFFFTSetup{ConvolveUpdateSize, PFFFT_REAL};
mFifoPos = 0;
mInput.fill(0.0f);
decltype(mFilter){}.swap(mFilter);
decltype(mOutput){}.swap(mOutput);
mFftBuffer.fill(0.0f);
mFftWorkBuffer.fill(0.0f);
mCurrentSegment = 0;
mNumConvolveSegs = 0;
decltype(mChans){}.swap(mChans);
decltype(mComplexData){}.swap(mComplexData);
/* An empty buffer doesn't need a convolution filter. */
if(!buffer || buffer->mSampleLen < 1) return;
mChannels = buffer->mChannels;
mAmbiLayout = IsUHJ(mChannels) ? AmbiLayout::FuMa : buffer->mAmbiLayout;
mAmbiScaling = IsUHJ(mChannels) ? AmbiScaling::UHJ : buffer->mAmbiScaling;
mAmbiOrder = minu(buffer->mAmbiOrder, MaxConvolveAmbiOrder);
const auto bytesPerSample = BytesFromFmt(buffer->mType);
const auto realChannels = buffer->channelsFromFmt();
const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder);
mChans.resize(numChannels);
/* The impulse response needs to have the same sample rate as the input and
* output. The bsinc24 resampler is decent, but there is high-frequency
* attenuation that some people may be able to pick up on. Since this is
* called very infrequently, go ahead and use the polyphase resampler.
*/
PPhaseResampler resampler;
if(device->Frequency != buffer->mSampleRate)
resampler.init(buffer->mSampleRate, device->Frequency);
const auto resampledCount = static_cast<uint>(
(uint64_t{buffer->mSampleLen}*device->Frequency+(buffer->mSampleRate-1)) /
buffer->mSampleRate);
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
for(auto &e : mChans)
e.mFilter = splitter;
mFilter.resize(numChannels, {});
mOutput.resize(numChannels, {});
/* Calculate the number of segments needed to hold the impulse response and
* the input history (rounded up), and allocate them. Exclude one segment
* which gets applied as a time-domain FIR filter. Make sure at least one
* segment is allocated to simplify handling.
*/
mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
const size_t complex_length{mNumConvolveSegs * ConvolveUpdateSize * (numChannels+1)};
mComplexData.resize(complex_length, 0.0f);
/* Load the samples from the buffer. */
const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)};
auto srcsamples = std::vector<float>(srclinelength * numChannels);
std::fill(srcsamples.begin(), srcsamples.end(), 0.0f);
for(size_t c{0};c < numChannels && c < realChannels;++c)
LoadSamples(srcsamples.data() + srclinelength*c, buffer->mData.data() + bytesPerSample*c,
realChannels, buffer->mType, buffer->mSampleLen);
if(IsUHJ(mChannels))
{
auto decoder = std::make_unique<UhjDecoderType>();
std::array<float*,4> samples{};
for(size_t c{0};c < numChannels;++c)
samples[c] = srcsamples.data() + srclinelength*c;
decoder->decode({samples.data(), numChannels}, buffer->mSampleLen, buffer->mSampleLen);
}
auto ressamples = std::vector<double>(buffer->mSampleLen + (resampler ? resampledCount : 0));
auto ffttmp = al::vector<float,16>(ConvolveUpdateSize);
auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
float *filteriter = mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize;
for(size_t c{0};c < numChannels;++c)
{
/* Resample to match the device. */
if(resampler)
{
std::copy_n(srcsamples.data() + srclinelength*c, buffer->mSampleLen,
ressamples.data() + resampledCount);
resampler.process(buffer->mSampleLen, ressamples.data()+resampledCount,
resampledCount, ressamples.data());
}
else
std::copy_n(srcsamples.data() + srclinelength*c, buffer->mSampleLen,
ressamples.data());
/* Store the first segment's samples in reverse in the time-domain, to
* apply as a FIR filter.
*/
const size_t first_size{minz(resampledCount, ConvolveUpdateSamples)};
std::transform(ressamples.data(), ressamples.data()+first_size, mFilter[c].rbegin(),
[](const double d) noexcept -> float { return static_cast<float>(d); });
size_t done{first_size};
for(size_t s{0};s < mNumConvolveSegs;++s)
{
const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
/* Apply a double-precision forward FFT for more precise frequency
* measurements.
*/
auto iter = std::copy_n(&ressamples[done], todo, fftbuffer.begin());
done += todo;
std::fill(iter, fftbuffer.end(), std::complex<double>{});
forward_fft(al::span{fftbuffer});
/* Convert to, and pack in, a float buffer for PFFFT. Note that the
* first bin stores the real component of the half-frequency bin in
* the imaginary component. Also scale the FFT by its length so the
* iFFT'd output will be normalized.
*/
static constexpr float fftscale{1.0f / float{ConvolveUpdateSize}};
for(size_t i{0};i < ConvolveUpdateSamples;++i)
{
ffttmp[i*2 ] = static_cast<float>(fftbuffer[i].real()) * fftscale;
ffttmp[i*2 + 1] = static_cast<float>((i == 0) ?
fftbuffer[ConvolveUpdateSamples].real() : fftbuffer[i].imag()) * fftscale;
}
/* Reorder backward to make it suitable for pffft_zconvolve and the
* subsequent pffft_transform(..., PFFFT_BACKWARD).
*/
mFft.zreorder(ffttmp.data(), al::to_address(filteriter), PFFFT_BACKWARD);
filteriter += ConvolveUpdateSize;
}
}
}
void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot,
const EffectProps *props, const EffectTarget target)
{
/* TODO: LFE is not mixed to output. This will require each buffer channel
* to have its own output target since the main mixing buffer won't have an
* LFE channel (due to being B-Format).
*/
static constexpr std::array MonoMap{
ChanPosMap{FrontCenter, std::array{0.0f, 0.0f, -1.0f}}
};
static constexpr std::array StereoMap{
ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}},
ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}},
};
static constexpr std::array RearMap{
ChanPosMap{BackLeft, std::array{-sin30, 0.0f, cos30}},
ChanPosMap{BackRight, std::array{ sin30, 0.0f, cos30}},
};
static constexpr std::array QuadMap{
ChanPosMap{FrontLeft, std::array{-sin45, 0.0f, -cos45}},
ChanPosMap{FrontRight, std::array{ sin45, 0.0f, -cos45}},
ChanPosMap{BackLeft, std::array{-sin45, 0.0f, cos45}},
ChanPosMap{BackRight, std::array{ sin45, 0.0f, cos45}},
};
static constexpr std::array X51Map{
ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}},
ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}},
ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}},
ChanPosMap{LFE, {}},
ChanPosMap{SideLeft, std::array{-sin110, 0.0f, -cos110}},
ChanPosMap{SideRight, std::array{ sin110, 0.0f, -cos110}},
};
static constexpr std::array X61Map{
ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}},
ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}},
ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}},
ChanPosMap{LFE, {}},
ChanPosMap{BackCenter, std::array{ 0.0f, 0.0f, 1.0f} },
ChanPosMap{SideLeft, std::array{-1.0f, 0.0f, 0.0f} },
ChanPosMap{SideRight, std::array{ 1.0f, 0.0f, 0.0f} },
};
static constexpr std::array X71Map{
ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}},
ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}},
ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}},
ChanPosMap{LFE, {}},
ChanPosMap{BackLeft, std::array{-sin30, 0.0f, cos30}},
ChanPosMap{BackRight, std::array{ sin30, 0.0f, cos30}},
ChanPosMap{SideLeft, std::array{ -1.0f, 0.0f, 0.0f}},
ChanPosMap{SideRight, std::array{ 1.0f, 0.0f, 0.0f}},
};
if(mNumConvolveSegs < 1) UNLIKELY
return;
mMix = &ConvolutionState::NormalMix;
for(auto &chan : mChans)
std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f);
const float gain{slot->Gain};
if(IsAmbisonic(mChannels))
{
DeviceBase *device{context->mDevice};
if(mChannels == FmtUHJ2 && !device->mUhjEncoder)
{
mMix = &ConvolutionState::UpsampleMix;
mChans[0].mHfScale = 1.0f;
mChans[0].mLfScale = DecoderBase::sWLFScale;
mChans[1].mHfScale = 1.0f;
mChans[1].mLfScale = DecoderBase::sXYLFScale;
mChans[2].mHfScale = 1.0f;
mChans[2].mLfScale = DecoderBase::sXYLFScale;
}
else if(device->mAmbiOrder > mAmbiOrder)
{
mMix = &ConvolutionState::UpsampleMix;
const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
device->m2DMixing);
mChans[0].mHfScale = scales[0];
mChans[0].mLfScale = 1.0f;
for(size_t i{1};i < mChans.size();++i)
{
mChans[i].mHfScale = scales[1];
mChans[i].mLfScale = 1.0f;
}
}
mOutTarget = target.Main->Buffer;
alu::Vector N{props->Convolution.OrientAt[0], props->Convolution.OrientAt[1],
props->Convolution.OrientAt[2], 0.0f};
N.normalize();
alu::Vector V{props->Convolution.OrientUp[0], props->Convolution.OrientUp[1],
props->Convolution.OrientUp[2], 0.0f};
V.normalize();
/* Build and normalize right-vector */
alu::Vector U{N.cross_product(V)};
U.normalize();
const std::array mixmatrix{
std::array{1.0f, 0.0f, 0.0f, 0.0f},
std::array{0.0f, U[0], -U[1], U[2]},
std::array{0.0f, -V[0], V[1], -V[2]},
std::array{0.0f, -N[0], N[1], -N[2]},
};
const auto scales = GetAmbiScales(mAmbiScaling);
const uint8_t *index_map{Is2DAmbisonic(mChannels) ?
GetAmbi2DLayout(mAmbiLayout).data() :
GetAmbiLayout(mAmbiLayout).data()};
std::array<float,MaxAmbiChannels> coeffs{};
for(size_t c{0u};c < mChans.size();++c)
{
const size_t acn{index_map[c]};
const float scale{scales[acn]};
for(size_t x{0};x < 4;++x)
coeffs[x] = mixmatrix[acn][x] * scale;
ComputePanGains(target.Main, coeffs, gain, mChans[c].Target);
}
}
else
{
DeviceBase *device{context->mDevice};
al::span<const ChanPosMap> chanmap{};
switch(mChannels)
{
case FmtMono: chanmap = MonoMap; break;
case FmtSuperStereo:
case FmtStereo: chanmap = StereoMap; break;
case FmtRear: chanmap = RearMap; break;
case FmtQuad: chanmap = QuadMap; break;
case FmtX51: chanmap = X51Map; break;
case FmtX61: chanmap = X61Map; break;
case FmtX71: chanmap = X71Map; break;
case FmtBFormat2D:
case FmtBFormat3D:
case FmtUHJ2:
case FmtUHJ3:
case FmtUHJ4:
break;
}
mOutTarget = target.Main->Buffer;
if(device->mRenderMode == RenderMode::Pairwise)
{
/* Scales the azimuth of the given vector by 3 if it's in front.
* Effectively scales +/-30 degrees to +/-90 degrees, leaving > +90
* and < -90 alone.
*/
auto ScaleAzimuthFront = [](std::array<float,3> pos) -> std::array<float,3>
{
if(pos[2] < 0.0f)
{
/* Normalize the length of the x,z components for a 2D
* vector of the azimuth angle. Negate Z since {0,0,-1} is
* angle 0.
*/
const float len2d{std::sqrt(pos[0]*pos[0] + pos[2]*pos[2])};
float x{pos[0] / len2d};
float z{-pos[2] / len2d};
/* Z > cos(pi/6) = -30 < azimuth < 30 degrees. */
if(z > cos30)
{
/* Triple the angle represented by x,z. */
x = x*3.0f - x*x*x*4.0f;
z = z*z*z*4.0f - z*3.0f;
/* Scale the vector back to fit in 3D. */
pos[0] = x * len2d;
pos[2] = -z * len2d;
}
else
{
/* If azimuth >= 30 degrees, clamp to 90 degrees. */
pos[0] = std::copysign(len2d, pos[0]);
pos[2] = 0.0f;
}
}
return pos;
};
for(size_t i{0};i < chanmap.size();++i)
{
if(chanmap[i].channel == LFE) continue;
const auto coeffs = CalcDirectionCoeffs(ScaleAzimuthFront(chanmap[i].pos), 0.0f);
ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
else for(size_t i{0};i < chanmap.size();++i)
{
if(chanmap[i].channel == LFE) continue;
const auto coeffs = CalcDirectionCoeffs(chanmap[i].pos, 0.0f);
ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
}
void ConvolutionState::process(const size_t samplesToDo,
const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
if(mNumConvolveSegs < 1) UNLIKELY
return;
size_t curseg{mCurrentSegment};
for(size_t base{0u};base < samplesToDo;)
{
const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
std::copy_n(samplesIn[0].begin() + base, todo,
mInput.begin()+ConvolveUpdateSamples+mFifoPos);
/* Apply the FIR for the newly retrieved input samples, and combine it
* with the inverse FFT'd output samples.
*/
for(size_t c{0};c < mChans.size();++c)
{
auto buf_iter = mChans[c].mBuffer.begin() + base;
apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data());
auto fifo_iter = mOutput[c].begin() + mFifoPos;
std::transform(fifo_iter, fifo_iter+todo, buf_iter, buf_iter, std::plus<>{});
}
mFifoPos += todo;
base += todo;
/* Check whether the input buffer is filled with new samples. */
if(mFifoPos < ConvolveUpdateSamples) break;
mFifoPos = 0;
/* Move the newest input to the front for the next iteration's history. */
std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin());
std::fill(mInput.begin()+ConvolveUpdateSamples, mInput.end(), 0.0f);
/* Calculate the frequency-domain response and add the relevant
* frequency bins to the FFT history.
*/
mFft.transform(mInput.data(), mComplexData.data() + curseg*ConvolveUpdateSize,
mFftWorkBuffer.data(), PFFFT_FORWARD);
const float *filter{mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize};
for(size_t c{0};c < mChans.size();++c)
{
/* Convolve each input segment with its IR filter counterpart
* (aligned in time).
*/
mFftBuffer.fill(0.0f);
const float *input{&mComplexData[curseg*ConvolveUpdateSize]};
for(size_t s{curseg};s < mNumConvolveSegs;++s)
{
mFft.zconvolve_accumulate(input, filter, mFftBuffer.data());
input += ConvolveUpdateSize;
filter += ConvolveUpdateSize;
}
input = mComplexData.data();
for(size_t s{0};s < curseg;++s)
{
mFft.zconvolve_accumulate(input, filter, mFftBuffer.data());
input += ConvolveUpdateSize;
filter += ConvolveUpdateSize;
}
/* Apply iFFT to get the 256 (really 255) samples for output. The
* 128 output samples are combined with the last output's 127
* second-half samples (and this output's second half is
* subsequently saved for next time).
*/
mFft.transform(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(),
PFFFT_BACKWARD);
/* The filter was attenuated, so the response is already scaled. */
for(size_t i{0};i < ConvolveUpdateSamples;++i)
mOutput[c][i] = mFftBuffer[i] + mOutput[c][ConvolveUpdateSamples+i];
for(size_t i{0};i < ConvolveUpdateSamples;++i)
mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i];
}
/* Shift the input history. */
curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1);
}
mCurrentSegment = curseg;
/* Finally, mix to the output. */
(this->*mMix)(samplesOut, samplesToDo);
}
struct ConvolutionStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new ConvolutionState{}}; }
};
} // namespace
EffectStateFactory *ConvolutionStateFactory_getFactory()
{
static ConvolutionStateFactory ConvolutionFactory{};
return &ConvolutionFactory;
}
|