aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/echo.cpp
blob: a69529dc127f3c49d6563e438766c15e01b03acf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2009 by Chris Robinson.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <algorithm>
#include <array>
#include <cstdlib>
#include <iterator>
#include <tuple>

#include "alc/effects/base.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
#include "vector.h"


namespace {

using uint = unsigned int;

constexpr float LowpassFreqRef{5000.0f};

struct EchoState final : public EffectState {
    al::vector<float,16> mSampleBuffer;

    // The echo is two tap. The delay is the number of samples from before the
    // current offset
    struct {
        size_t delay{0u};
    } mTap[2];
    size_t mOffset{0u};

    /* The panning gains for the two taps */
    struct {
        float Current[MaxAmbiChannels]{};
        float Target[MaxAmbiChannels]{};
    } mGains[2];

    BiquadFilter mFilter;
    float mFeedGain{0.0f};

    alignas(16) float mTempBuffer[2][BufferLineSize];

    void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
    void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
        const EffectTarget target) override;
    void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
        const al::span<FloatBufferLine> samplesOut) override;

    DEF_NEWDEL(EchoState)
};

void EchoState::deviceUpdate(const DeviceBase *Device, const BufferStorage*)
{
    const auto frequency = static_cast<float>(Device->Frequency);

    // Use the next power of 2 for the buffer length, so the tap offsets can be
    // wrapped using a mask instead of a modulo
    const uint maxlen{NextPowerOf2(float2uint(EchoMaxDelay*frequency + 0.5f) +
        float2uint(EchoMaxLRDelay*frequency + 0.5f))};
    if(maxlen != mSampleBuffer.size())
        al::vector<float,16>(maxlen).swap(mSampleBuffer);

    std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
    for(auto &e : mGains)
    {
        std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
        std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
    }
}

void EchoState::update(const ContextBase *context, const EffectSlot *slot,
    const EffectProps *props, const EffectTarget target)
{
    const DeviceBase *device{context->mDevice};
    const auto frequency = static_cast<float>(device->Frequency);

    mTap[0].delay = maxu(float2uint(props->Echo.Delay*frequency + 0.5f), 1);
    mTap[1].delay = float2uint(props->Echo.LRDelay*frequency + 0.5f) + mTap[0].delay;

    const float gainhf{maxf(1.0f - props->Echo.Damping, 0.0625f)}; /* Limit -24dB */
    mFilter.setParamsFromSlope(BiquadType::HighShelf, LowpassFreqRef/frequency, gainhf, 1.0f);

    mFeedGain = props->Echo.Feedback;

    /* Convert echo spread (where 0 = center, +/-1 = sides) to angle. */
    const float angle{std::asin(props->Echo.Spread)};

    const auto coeffs0 = CalcAngleCoeffs(-angle, 0.0f, 0.0f);
    const auto coeffs1 = CalcAngleCoeffs( angle, 0.0f, 0.0f);

    mOutTarget = target.Main->Buffer;
    ComputePanGains(target.Main, coeffs0.data(), slot->Gain, mGains[0].Target);
    ComputePanGains(target.Main, coeffs1.data(), slot->Gain, mGains[1].Target);
}

void EchoState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
    const size_t mask{mSampleBuffer.size()-1};
    float *RESTRICT delaybuf{mSampleBuffer.data()};
    size_t offset{mOffset};
    size_t tap1{offset - mTap[0].delay};
    size_t tap2{offset - mTap[1].delay};
    float z1, z2;

    ASSUME(samplesToDo > 0);

    const BiquadFilter filter{mFilter};
    std::tie(z1, z2) = mFilter.getComponents();
    for(size_t i{0u};i < samplesToDo;)
    {
        offset &= mask;
        tap1 &= mask;
        tap2 &= mask;

        size_t td{minz(mask+1 - maxz(offset, maxz(tap1, tap2)), samplesToDo-i)};
        do {
            /* Feed the delay buffer's input first. */
            delaybuf[offset] = samplesIn[0][i];

            /* Get delayed output from the first and second taps. Use the
             * second tap for feedback.
             */
            mTempBuffer[0][i] = delaybuf[tap1++];
            mTempBuffer[1][i] = delaybuf[tap2++];
            const float feedb{mTempBuffer[1][i++]};

            /* Add feedback to the delay buffer with damping and attenuation. */
            delaybuf[offset++] += filter.processOne(feedb, z1, z2) * mFeedGain;
        } while(--td);
    }
    mFilter.setComponents(z1, z2);
    mOffset = offset;

    for(size_t c{0};c < 2;c++)
        MixSamples({mTempBuffer[c], samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target,
            samplesToDo, 0);
}


struct EchoStateFactory final : public EffectStateFactory {
    al::intrusive_ptr<EffectState> create() override
    { return al::intrusive_ptr<EffectState>{new EchoState{}}; }
};

} // namespace

EffectStateFactory *EchoStateFactory_getFactory()
{
    static EchoStateFactory EchoFactory{};
    return &EchoFactory;
}