1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <cstdlib>
#include <iterator>
#include "alc/effects/base.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
namespace {
using uint = unsigned int;
inline float Sin(uint index, float scale)
{ return std::sin(static_cast<float>(index) * scale); }
inline float Saw(uint index, float scale)
{ return static_cast<float>(index)*scale - 1.0f; }
inline float Square(uint index, float scale)
{ return (static_cast<float>(index)*scale < 0.5f)*2.0f - 1.0f; }
inline float One(uint, float)
{ return 1.0f; }
struct ModulatorState final : public EffectState {
template<float (&func)(uint,float)>
void Modulate(size_t todo)
{
const uint range{mRange};
const float scale{mIndexScale};
uint index{mIndex};
ASSUME(range > 1);
ASSUME(todo > 0);
for(size_t i{0};i < todo;)
{
size_t rem{minz(todo-i, range-index)};
do {
mModSamples[i++] = func(index++, scale);
} while(--rem);
if(index == range)
index = 0;
}
mIndex = index;
}
void (ModulatorState::*mGenModSamples)(size_t){};
uint mIndex{0};
uint mRange{1};
float mIndexScale{0.0f};
alignas(16) FloatBufferLine mModSamples{};
alignas(16) FloatBufferLine mBuffer{};
struct {
uint mTargetChannel{InvalidChannelIndex};
BiquadFilter mFilter;
float mCurrentGain{};
float mTargetGain{};
} mChans[MaxAmbiChannels];
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) override;
DEF_NEWDEL(ModulatorState)
};
template<>
void ModulatorState::Modulate<One>(size_t todo)
{
std::fill_n(mModSamples.begin(), todo, 1.0f);
mIndex = 0;
}
void ModulatorState::deviceUpdate(const DeviceBase*, const BufferStorage*)
{
for(auto &e : mChans)
{
e.mTargetChannel = InvalidChannelIndex;
e.mFilter.clear();
e.mCurrentGain = 0.0f;
}
}
void ModulatorState::update(const ContextBase *context, const EffectSlot *slot,
const EffectProps *props, const EffectTarget target)
{
const DeviceBase *device{context->mDevice};
/* The effective frequency will be adjusted to have a whole number of
* samples per cycle (at 48khz, that allows 8000, 6857.14, 6000, 5333.33,
* 4800, etc). We could do better by using fixed-point stepping over a sin
* function, with additive synthesis for the square and sawtooth waveforms,
* but that may need a more efficient sin function since it needs to do
* many iterations per sample.
*/
const float samplesPerCycle{props->Modulator.Frequency > 0.0f
? static_cast<float>(device->Frequency)/props->Modulator.Frequency + 0.5f
: 1.0f};
const uint range{static_cast<uint>(clampf(samplesPerCycle, 1.0f,
static_cast<float>(device->Frequency)))};
mIndex = static_cast<uint>(uint64_t{mIndex} * range / mRange);
mRange = range;
if(mRange == 1)
{
mIndexScale = 0.0f;
mGenModSamples = &ModulatorState::Modulate<One>;
}
else if(props->Modulator.Waveform == ModulatorWaveform::Sinusoid)
{
mIndexScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mRange);
mGenModSamples = &ModulatorState::Modulate<Sin>;
}
else if(props->Modulator.Waveform == ModulatorWaveform::Sawtooth)
{
mIndexScale = 2.0f / static_cast<float>(mRange-1);
mGenModSamples = &ModulatorState::Modulate<Saw>;
}
else /*if(props->Modulator.Waveform == ModulatorWaveform::Square)*/
{
/* For square wave, the range should be even (there should be an equal
* number of high and low samples). An odd number of samples per cycle
* would need a more complex value generator.
*/
mRange = (mRange+1) & ~1u;
mIndexScale = 1.0f / static_cast<float>(mRange-1);
mGenModSamples = &ModulatorState::Modulate<Square>;
}
float f0norm{props->Modulator.HighPassCutoff / static_cast<float>(device->Frequency)};
f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f);
/* Bandwidth value is constant in octaves. */
mChans[0].mFilter.setParamsFromBandwidth(BiquadType::HighPass, f0norm, 1.0f, 0.75f);
for(size_t i{1u};i < slot->Wet.Buffer.size();++i)
mChans[i].mFilter.copyParamsFrom(mChans[0].mFilter);
mOutTarget = target.Main->Buffer;
auto set_channel = [this](size_t idx, uint outchan, float outgain)
{
mChans[idx].mTargetChannel = outchan;
mChans[idx].mTargetGain = outgain;
};
target.Main->setAmbiMixParams(slot->Wet, slot->Gain, set_channel);
}
void ModulatorState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
(this->*mGenModSamples)(samplesToDo);
auto chandata = std::begin(mChans);
for(const auto &input : samplesIn)
{
const size_t outidx{chandata->mTargetChannel};
if(outidx != InvalidChannelIndex)
{
chandata->mFilter.process({input.data(), samplesToDo}, mBuffer.data());
for(size_t i{0u};i < samplesToDo;++i)
mBuffer[i] *= mModSamples[i];
MixSamples({mBuffer.data(), samplesToDo}, samplesOut[outidx].data(),
chandata->mCurrentGain, chandata->mTargetGain, minz(samplesToDo, 64));
}
++chandata;
}
}
struct ModulatorStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new ModulatorState{}}; }
};
} // namespace
EffectStateFactory *ModulatorStateFactory_getFactory()
{
static ModulatorStateFactory ModulatorFactory{};
return &ModulatorFactory;
}
|