aboutsummaryrefslogtreecommitdiffstats
path: root/common/alcomplex.c
blob: c1a312e3319436a091e799082764365edd3e6847 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

#include "config.h"

#include "alcomplex.h"

#include <math.h>


extern inline ALcomplex complex_add(ALcomplex a, ALcomplex b);
extern inline ALcomplex complex_sub(ALcomplex a, ALcomplex b);
extern inline ALcomplex complex_mult(ALcomplex a, ALcomplex b);

void complex_fft(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign)
{
    ALsizei i, j, k, mask, step, step2;
    ALcomplex temp, u, w;
    ALdouble arg;

    /* Bit-reversal permutation applied to a sequence of FFTSize items */
    for(i = 1;i < FFTSize-1;i++)
    {
        for(mask = 0x1, j = 0;mask < FFTSize;mask <<= 1)
        {
            if((i&mask) != 0)
                j++;
            j <<= 1;
        }
        j >>= 1;

        if(i < j)
        {
            temp         = FFTBuffer[i];
            FFTBuffer[i] = FFTBuffer[j];
            FFTBuffer[j] = temp;
        }
    }

    /* Iterative form of Danielson–Lanczos lemma */
    for(i = 1, step = 2;i < FFTSize;i<<=1, step<<=1)
    {
        step2 = step >> 1;
        arg   = M_PI / step2;

        w.Real = cos(arg);
        w.Imag = sin(arg) * Sign;

        u.Real = 1.0;
        u.Imag = 0.0;

        for(j = 0;j < step2;j++)
        {
            for(k = j;k < FFTSize;k+=step)
            {
                temp               = complex_mult(FFTBuffer[k+step2], u);
                FFTBuffer[k+step2] = complex_sub(FFTBuffer[k], temp);
                FFTBuffer[k]       = complex_add(FFTBuffer[k], temp);
            }

            u = complex_mult(u, w);
        }
    }
}