1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
#include "config.h"
#include "alcomplex.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <functional>
#include <utility>
#include "albit.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "opthelpers.h"
namespace {
using ushort = unsigned short;
using ushort2 = std::pair<ushort,ushort>;
using complex_d = std::complex<double>;
constexpr size_t BitReverseCounter(size_t log2_size) noexcept
{
/* Some magic math that calculates the number of swaps needed for a
* sequence of bit-reversed indices when index < reversed_index.
*/
return (1u<<(log2_size-1)) - (1u<<((log2_size-1u)/2u));
}
template<size_t N>
struct BitReverser {
static_assert(N <= sizeof(ushort)*8, "Too many bits for the bit-reversal table.");
std::array<ushort2,BitReverseCounter(N)> mData{};
constexpr BitReverser()
{
const size_t fftsize{1u << N};
size_t ret_i{0};
/* Bit-reversal permutation applied to a sequence of fftsize items. */
for(size_t idx{1u};idx < fftsize-1;++idx)
{
size_t revidx{idx};
revidx = ((revidx&0xaaaaaaaa) >> 1) | ((revidx&0x55555555) << 1);
revidx = ((revidx&0xcccccccc) >> 2) | ((revidx&0x33333333) << 2);
revidx = ((revidx&0xf0f0f0f0) >> 4) | ((revidx&0x0f0f0f0f) << 4);
revidx = ((revidx&0xff00ff00) >> 8) | ((revidx&0x00ff00ff) << 8);
revidx = (revidx >> 16) | ((revidx&0x0000ffff) << 16);
revidx >>= 32-N;
if(idx < revidx)
{
mData[ret_i].first = static_cast<ushort>(idx);
mData[ret_i].second = static_cast<ushort>(revidx);
++ret_i;
}
}
assert(ret_i == std::size(mData));
}
};
/* These bit-reversal swap tables support up to 11-bit indices (2048 elements),
* which is large enough for the filters and effects in OpenAL Soft. Larger FFT
* requests will use a slower table-less path.
*/
constexpr BitReverser<2> BitReverser2{};
constexpr BitReverser<3> BitReverser3{};
constexpr BitReverser<4> BitReverser4{};
constexpr BitReverser<5> BitReverser5{};
constexpr BitReverser<6> BitReverser6{};
constexpr BitReverser<7> BitReverser7{};
constexpr BitReverser<8> BitReverser8{};
constexpr BitReverser<9> BitReverser9{};
constexpr BitReverser<10> BitReverser10{};
constexpr BitReverser<11> BitReverser11{};
constexpr std::array<al::span<const ushort2>,12> gBitReverses{{
{}, {},
BitReverser2.mData,
BitReverser3.mData,
BitReverser4.mData,
BitReverser5.mData,
BitReverser6.mData,
BitReverser7.mData,
BitReverser8.mData,
BitReverser9.mData,
BitReverser10.mData,
BitReverser11.mData
}};
/* Lookup table for std::polar(1, pi / (1<<index)); */
template<typename T>
constexpr std::array<std::complex<T>,gBitReverses.size()-1> gArgAngle{{
{static_cast<T>(-1.00000000000000000e+00), static_cast<T>(0.00000000000000000e+00)},
{static_cast<T>( 0.00000000000000000e+00), static_cast<T>(1.00000000000000000e+00)},
{static_cast<T>( 7.07106781186547524e-01), static_cast<T>(7.07106781186547524e-01)},
{static_cast<T>( 9.23879532511286756e-01), static_cast<T>(3.82683432365089772e-01)},
{static_cast<T>( 9.80785280403230449e-01), static_cast<T>(1.95090322016128268e-01)},
{static_cast<T>( 9.95184726672196886e-01), static_cast<T>(9.80171403295606020e-02)},
{static_cast<T>( 9.98795456205172393e-01), static_cast<T>(4.90676743274180143e-02)},
{static_cast<T>( 9.99698818696204220e-01), static_cast<T>(2.45412285229122880e-02)},
{static_cast<T>( 9.99924701839144541e-01), static_cast<T>(1.22715382857199261e-02)},
{static_cast<T>( 9.99981175282601143e-01), static_cast<T>(6.13588464915447536e-03)},
{static_cast<T>( 9.99995293809576172e-01), static_cast<T>(3.06795676296597627e-03)}
}};
} // namespace
void complex_fft(const al::span<std::complex<double>> buffer, const double sign)
{
const size_t fftsize{buffer.size()};
/* Get the number of bits used for indexing. Simplifies bit-reversal and
* the main loop count.
*/
const size_t log2_size{static_cast<size_t>(al::countr_zero(fftsize))};
if(log2_size < gBitReverses.size()) LIKELY
{
for(auto &rev : gBitReverses[log2_size])
std::swap(buffer[rev.first], buffer[rev.second]);
/* Iterative form of Danielson-Lanczos lemma */
for(size_t i{0};i < log2_size;++i)
{
const size_t step2{1_uz << i};
const size_t step{2_uz << i};
/* The first iteration of the inner loop would have u=1, which we
* can simplify to remove a number of complex multiplies.
*/
for(size_t k{0};k < fftsize;k+=step)
{
const complex_d temp{buffer[k+step2]};
buffer[k+step2] = buffer[k] - temp;
buffer[k] += temp;
}
const complex_d w{gArgAngle<double>[i].real(), gArgAngle<double>[i].imag()*sign};
complex_d u{w};
for(size_t j{1};j < step2;j++)
{
for(size_t k{j};k < fftsize;k+=step)
{
const complex_d temp{buffer[k+step2] * u};
buffer[k+step2] = buffer[k] - temp;
buffer[k] += temp;
}
u *= w;
}
}
}
else
{
assert(log2_size < 32);
for(size_t idx{1u};idx < fftsize-1;++idx)
{
size_t revidx{idx};
revidx = ((revidx&0xaaaaaaaa) >> 1) | ((revidx&0x55555555) << 1);
revidx = ((revidx&0xcccccccc) >> 2) | ((revidx&0x33333333) << 2);
revidx = ((revidx&0xf0f0f0f0) >> 4) | ((revidx&0x0f0f0f0f) << 4);
revidx = ((revidx&0xff00ff00) >> 8) | ((revidx&0x00ff00ff) << 8);
revidx = (revidx >> 16) | ((revidx&0x0000ffff) << 16);
revidx >>= 32-log2_size;
if(idx < revidx)
std::swap(buffer[idx], buffer[revidx]);
}
const double pi{al::numbers::pi * sign};
for(size_t i{0};i < log2_size;++i)
{
const size_t step2{1_uz << i};
const size_t step{2_uz << i};
for(size_t k{0};k < fftsize;k+=step)
{
const complex_d temp{buffer[k+step2]};
buffer[k+step2] = buffer[k] - temp;
buffer[k] += temp;
}
const double arg{pi / static_cast<double>(step2)};
const complex_d w{std::polar(1.0, arg)};
complex_d u{w};
for(size_t j{1};j < step2;j++)
{
for(size_t k{j};k < fftsize;k+=step)
{
const complex_d temp{buffer[k+step2] * u};
buffer[k+step2] = buffer[k] - temp;
buffer[k] += temp;
}
u *= w;
}
}
}
}
void complex_hilbert(const al::span<std::complex<double>> buffer)
{
using namespace std::placeholders;
inverse_fft(buffer);
const double inverse_size = 1.0/static_cast<double>(buffer.size());
auto bufiter = buffer.begin();
const auto halfiter = bufiter + (buffer.size()>>1);
*bufiter *= inverse_size; ++bufiter;
bufiter = std::transform(bufiter, halfiter, bufiter,
[scale=inverse_size*2.0](std::complex<double> d){ return d * scale; });
*bufiter *= inverse_size; ++bufiter;
std::fill(bufiter, buffer.end(), std::complex<double>{});
forward_fft(buffer);
}
|