aboutsummaryrefslogtreecommitdiffstats
path: root/common/bsinc_tables.cpp
blob: 853fe6055b9e8247aa660bf2b0bdf3f53529d7f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

#include "bsinc_tables.h"

#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <memory>
#include <stdexcept>

#include "math_defs.h"
#include "vector.h"


namespace {

/* The max points includes the doubling for downsampling, so the maximum number
 * of base sample points is 24, which is 23rd order.
 */
constexpr int BSincPointsMax{BSINC_POINTS_MAX};
constexpr int BSincPointsHalf{BSincPointsMax / 2};

constexpr int BSincPhaseCount{BSINC_PHASE_COUNT};
constexpr int BSincScaleCount{BSINC_SCALE_COUNT};


template<typename T>
constexpr std::enable_if_t<std::is_floating_point<T>::value,T> sqrt(T x)
{
    if(!(x >= 0 && x < std::numeric_limits<double>::infinity()))
        throw std::domain_error{"Invalid sqrt value"};

    T cur{x}, prev{0};
    while(cur != prev)
    {
        prev = cur;
        cur = 0.5f*(cur + x/cur);
    }
    return cur;
}

template<typename T>
constexpr std::enable_if_t<std::is_floating_point<T>::value,T> sin(T x)
{
    if(x >= al::MathDefs<T>::Tau())
    {
        if(!(x < 65536))
            throw std::domain_error{"Invalid sin value"};
        do {
            x -= al::MathDefs<T>::Tau();
        } while(x >= al::MathDefs<T>::Tau());
    }
    else if(x < 0)
    {
        if(!(x > -65536))
            throw std::domain_error{"Invalid sin value"};
        do {
            x += al::MathDefs<T>::Tau();
        } while(x < 0);
    }

    T prev{x}, n{6};
    int i{4}, s{-1};
    const T xx{x*x};
    T t{xx*x};

    T cur{prev + t*s/n};
    while(prev != cur)
    {
        prev = cur;
        n *= i*(i+1);
        i += 2;
        s = -s;
        t *= xx;

        cur += t*s/n;
    }
    return cur;
}


/* This is the normalized cardinal sine (sinc) function.
 *
 *   sinc(x) = { 1,                   x = 0
 *             { sin(pi x) / (pi x),  otherwise.
 */
constexpr double Sinc(const double x)
{
    if(!(x > 1e-15 || x < -1e-15))
        return 1.0;
    return sin(al::MathDefs<double>::Pi()*x) / (al::MathDefs<double>::Pi()*x);
}

/* The zero-order modified Bessel function of the first kind, used for the
 * Kaiser window.
 *
 *   I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
 *          = sum_{k=0}^inf ((x / 2)^k / k!)^2
 */
constexpr double BesselI_0(const double x)
{
    /* Start at k=1 since k=0 is trivial. */
    const double x2{x / 2.0};
    double term{1.0};
    double sum{1.0};
    double last_sum{};
    int k{1};

    /* Let the integration converge until the term of the sum is no longer
     * significant.
     */
    do {
        const double y{x2 / k};
        ++k;
        last_sum = sum;
        term *= y * y;
        sum += term;
    } while(sum != last_sum);

    return sum;
}

/* Calculate a Kaiser window from the given beta value and a normalized k
 * [-1, 1].
 *
 *   w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B),  -1 <= k <= 1
 *          { 0,                              elsewhere.
 *
 * Where k can be calculated as:
 *
 *   k = i / l,         where -l <= i <= l.
 *
 * or:
 *
 *   k = 2 i / M - 1,   where 0 <= i <= M.
 */
constexpr double Kaiser(const double beta, const double k, const double besseli_0_beta)
{
    if(!(k >= -1.0 && k <= 1.0))
        return 0.0;
    return BesselI_0(beta * sqrt(1.0 - k*k)) / besseli_0_beta;
}

/* Calculates the (normalized frequency) transition width of the Kaiser window.
 * Rejection is in dB.
 */
constexpr double CalcKaiserWidth(const double rejection, const int order)
{
    if(rejection > 21.19)
       return (rejection - 7.95) / (order * 2.285 * al::MathDefs<double>::Tau());
    /* This enforces a minimum rejection of just above 21.18dB */
    return 5.79 / (order * al::MathDefs<double>::Tau());
}

/* Calculates the beta value of the Kaiser window. Rejection is in dB. */
constexpr double CalcKaiserBeta(const double rejection)
{
    if(rejection > 50.0)
       return 0.1102 * (rejection-8.7);
    else if(rejection >= 21.0)
       return (0.5842 * std::pow(rejection-21.0, 0.4)) + (0.07886 * (rejection-21.0));
    return 0.0;
}


struct BSincHeader {
    double width;
    double beta;
    double scaleBase;
    double scaleRange;
    double besseli_0_beta;

    int a[BSINC_SCALE_COUNT];
    int total_size;
};

constexpr BSincHeader GenerateBSincHeader(int Rejection, int Order)
{
    BSincHeader ret{};
    ret.width = CalcKaiserWidth(Rejection, Order);
    ret.beta = CalcKaiserBeta(Rejection);
    ret.scaleBase = ret.width / 2.0;
    ret.scaleRange = 1.0 - ret.scaleBase;
    ret.besseli_0_beta = BesselI_0(ret.beta);

    int num_points{Order+1};
    for(int si{0};si < BSincScaleCount;++si)
    {
        const double scale{ret.scaleBase + (ret.scaleRange * si / (BSincScaleCount - 1))};
        const int a{std::min(static_cast<int>(num_points / 2.0 / scale), num_points)};
        const int m{2 * a};

        ret.a[si] = a;
        ret.total_size += 4 * BSincPhaseCount * ((m+3) & ~3);
    }

    return ret;
}

/* 11th and 23rd order filters (12 and 24-point respectively) with a 60dB drop
 * at nyquist. Each filter will scale up the order when downsampling, to 23 and
 * 47th order respectively.
 */
constexpr BSincHeader bsinc12_hdr{GenerateBSincHeader(60, 11)};
constexpr BSincHeader bsinc24_hdr{GenerateBSincHeader(60, 23)};


/* std::array is missing constexpr for several methods. */
template<typename T, size_t N>
struct Array {
    T data[N];
};

/* FIXME: This should be constexpr, but the temporary filter table is apparently too big
 * (~200K) for some systems. This requires using heap space, which is not
 * allowed in a constexpr function.
 */
template<size_t total_size>
auto GenerateBSincCoeffs(const BSincHeader &hdr)
{
    auto filter = std::make_unique<double[][BSincPhaseCount+1][BSincPointsMax]>(BSincScaleCount);

    /* Calculate the Kaiser-windowed Sinc filter coefficients for each scale
     * and phase index.
     */
    for(unsigned int si{0};si < BSincScaleCount;++si)
    {
        const int m{hdr.a[si] * 2};
        const int o{BSincPointsHalf - (m/2)};
        const int l{hdr.a[si] - 1};
        const int a{hdr.a[si]};
        const double scale{hdr.scaleBase + (hdr.scaleRange * si / (BSincScaleCount - 1))};
        const double cutoff{scale - (hdr.scaleBase * std::max(0.5, scale) * 2.0)};

        /* Do one extra phase index so that the phase delta has a proper target
         * for its last index.
         */
        for(int pi{0};pi <= BSincPhaseCount;++pi)
        {
            const double phase{l + (pi/double{BSincPhaseCount})};

            for(int i{0};i < m;++i)
            {
                const double x{i - phase};
                filter[si][pi][o+i] = Kaiser(hdr.beta, x/a, hdr.besseli_0_beta) * cutoff *
                    Sinc(cutoff*x);
            }
        }
    }

    Array<float,total_size> ret{};
    size_t idx{0};

    for(unsigned int si{0};si < BSincScaleCount-1;++si)
    {
        const int m{((hdr.a[si]*2) + 3) & ~3};
        const int o{BSincPointsHalf - (m/2)};

        for(int pi{0};pi < BSincPhaseCount;++pi)
        {
            /* Write out the filter. Also calculate and write out the phase and
             * scale deltas.
             */
            for(int i{0};i < m;++i)
                ret.data[idx++] = static_cast<float>(filter[si][pi][o+i]);

            /* Linear interpolation between phases is simplified by pre-
             * calculating the delta (b - a) in: x = a + f (b - a)
             */
            for(int i{0};i < m;++i)
            {
                const double phDelta{filter[si][pi+1][o+i] - filter[si][pi][o+i]};
                ret.data[idx++] = static_cast<float>(phDelta);
            }

            /* Linear interpolation between scales is also simplified.
             *
             * Given a difference in points between scales, the destination
             * points will be 0, thus: x = a + f (-a)
             */
            for(int i{0};i < m;++i)
            {
                const double scDelta{filter[si+1][pi][o+i] - filter[si][pi][o+i]};
                ret.data[idx++] = static_cast<float>(scDelta);
            }

            /* This last simplification is done to complete the bilinear
             * equation for the combination of phase and scale.
             */
            for(int i{0};i < m;++i)
            {
                const double spDelta{(filter[si+1][pi+1][o+i] - filter[si+1][pi][o+i]) -
                    (filter[si][pi+1][o+i] - filter[si][pi][o+i])};
                ret.data[idx++] = static_cast<float>(spDelta);
            }
        }
    }
    {
        /* The last scale index doesn't have any scale or scale-phase deltas. */
        const unsigned int si{BSincScaleCount - 1};
        const int m{((hdr.a[si]*2) + 3) & ~3};
        const int o{BSincPointsHalf - (m/2)};

        for(int pi{0};pi < BSincPhaseCount;++pi)
        {
            for(int i{0};i < m;++i)
                ret.data[idx++] = static_cast<float>(filter[si][pi][o+i]);
            for(int i{0};i < m;++i)
            {
                const double phDelta{filter[si][pi+1][o+i] - filter[si][pi][o+i]};
                ret.data[idx++] = static_cast<float>(phDelta);
            }
            for(int i{0};i < m;++i)
                ret.data[idx++] = 0.0f;
            for(int i{0};i < m;++i)
                ret.data[idx++] = 0.0f;
        }
    }
    assert(idx == total_size);

    return ret;
}

/* FIXME: These can't be constexpr due to reaching the step limit. */
alignas(16) const auto bsinc12_table = GenerateBSincCoeffs<bsinc12_hdr.total_size>(bsinc12_hdr);
alignas(16) const auto bsinc24_table = GenerateBSincCoeffs<bsinc24_hdr.total_size>(bsinc24_hdr);


constexpr BSincTable GenerateBSincTable(const BSincHeader &hdr, const float *tab)
{
    BSincTable ret{};
    ret.scaleBase = static_cast<float>(hdr.scaleBase);
    ret.scaleRange = static_cast<float>(1.0 / hdr.scaleRange);
    for(int i{0};i < BSincScaleCount;++i)
        ret.m[i] = static_cast<unsigned int>(((hdr.a[i]*2) + 3) & ~3);
    ret.filterOffset[0] = 0;
    for(int i{1};i < BSincScaleCount;++i)
        ret.filterOffset[i] = ret.filterOffset[i-1] + ret.m[i-1]*4*BSincPhaseCount;
    ret.Tab = tab;
    return ret;
}

} // namespace

const BSincTable bsinc12{GenerateBSincTable(bsinc12_hdr, bsinc12_table.data)};
const BSincTable bsinc24{GenerateBSincTable(bsinc24_hdr, bsinc24_table.data)};