1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
#ifndef CORE_HRTF_H
#define CORE_HRTF_H
#include <array>
#include <cstddef>
#include <memory>
#include <optional>
#include <string>
#include <vector>
#include "almalloc.h"
#include "alspan.h"
#include "atomic.h"
#include "ambidefs.h"
#include "bufferline.h"
#include "flexarray.h"
#include "intrusive_ptr.h"
#include "mixer/hrtfdefs.h"
struct alignas(16) HrtfStore {
std::atomic<uint> mRef;
uint mSampleRate : 24;
uint mIrSize : 8;
struct Field {
float distance;
ubyte evCount;
};
/* NOTE: Fields are stored *backwards*. field[0] is the farthest field, and
* field[fdCount-1] is the nearest.
*/
al::span<const Field> mFields;
struct Elevation {
ushort azCount;
ushort irOffset;
};
Elevation *mElev;
const HrirArray *mCoeffs;
const ubyte2 *mDelays;
void getCoeffs(float elevation, float azimuth, float distance, float spread, HrirArray &coeffs,
const al::span<uint,2> delays);
void add_ref();
void dec_ref();
void *operator new(size_t) = delete;
void *operator new[](size_t) = delete;
void operator delete[](void*) noexcept = delete;
void operator delete(gsl::owner<void*> block, void*) noexcept
{ ::operator delete[](block, std::align_val_t{alignof(HrtfStore)}); }
void operator delete(gsl::owner<void*> block) noexcept
{ ::operator delete[](block, std::align_val_t{alignof(HrtfStore)}); }
};
using HrtfStorePtr = al::intrusive_ptr<HrtfStore>;
struct EvRadians { float value; };
struct AzRadians { float value; };
struct AngularPoint {
EvRadians Elev;
AzRadians Azim;
};
struct DirectHrtfState {
std::array<float,BufferLineSize> mTemp{};
/* HRTF filter state for dry buffer content */
uint mIrSize{0};
al::FlexArray<HrtfChannelState> mChannels;
DirectHrtfState(size_t numchans) : mChannels{numchans} { }
/**
* Produces HRTF filter coefficients for decoding B-Format, given a set of
* virtual speaker positions, a matching decoding matrix, and per-order
* high-frequency gains for the decoder. The calculated impulse responses
* are ordered and scaled according to the matrix input.
*/
void build(const HrtfStore *Hrtf, const uint irSize, const bool perHrirMin,
const al::span<const AngularPoint> AmbiPoints,
const al::span<const std::array<float,MaxAmbiChannels>> AmbiMatrix,
const float XOverFreq, const al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain);
static std::unique_ptr<DirectHrtfState> Create(size_t num_chans);
DEF_FAM_NEWDEL(DirectHrtfState, mChannels)
};
std::vector<std::string> EnumerateHrtf(std::optional<std::string> pathopt);
HrtfStorePtr GetLoadedHrtf(const std::string &name, const uint devrate);
#endif /* CORE_HRTF_H */
|