1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
#include "config.h"
#include "mixer.h"
#include <cmath>
#include "devformat.h"
#include "device.h"
#include "math_defs.h"
#include "mixer/defs.h"
struct CTag;
MixerFunc MixSamples{Mix_<CTag>};
std::array<float,MaxAmbiChannels> CalcAmbiCoeffs(const float y, const float z, const float x,
const float spread)
{
std::array<float,MaxAmbiChannels> coeffs;
/* Zeroth-order */
coeffs[0] = 1.0f; /* ACN 0 = 1 */
/* First-order */
coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
/* Second-order */
const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z};
coeffs[4] = 3.872983346f * xy; /* ACN 4 = sqrt(15) * X * Y */
coeffs[5] = 3.872983346f * yz; /* ACN 5 = sqrt(15) * Y * Z */
coeffs[6] = 1.118033989f * (3.0f*zz - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
coeffs[7] = 3.872983346f * xz; /* ACN 7 = sqrt(15) * X * Z */
coeffs[8] = 1.936491673f * (xx - yy); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
/* Third-order */
coeffs[9] = 2.091650066f * (y*(3.0f*xx - yy)); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
coeffs[10] = 10.246950766f * (z*xy); /* ACN 10 = sqrt(105) * Z * X * Y */
coeffs[11] = 1.620185175f * (y*(5.0f*zz - 1.0f)); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
coeffs[12] = 1.322875656f * (z*(5.0f*zz - 3.0f)); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
coeffs[13] = 1.620185175f * (x*(5.0f*zz - 1.0f)); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
coeffs[14] = 5.123475383f * (z*(xx - yy)); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
coeffs[15] = 2.091650066f * (x*(xx - 3.0f*yy)); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
/* Fourth-order */
/* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */
/* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */
/* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */
/* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */
/* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */
/* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */
/* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */
/* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */
/* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */
if(spread > 0.0f)
{
/* Implement the spread by using a spherical source that subtends the
* angle spread. See:
* http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3
*
* When adjusted for N3D normalization instead of SN3D, these
* calculations are:
*
* ZH0 = -sqrt(pi) * (-1+ca);
* ZH1 = 0.5*sqrt(pi) * sa*sa;
* ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1);
* ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1);
* ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3);
* ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1);
*
* The gain of the source is compensated for size, so that the
* loudness doesn't depend on the spread. Thus:
*
* ZH0 = 1.0f;
* ZH1 = 0.5f * (ca+1.0f);
* ZH2 = 0.5f * (ca+1.0f)*ca;
* ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f);
* ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca;
* ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f);
*/
const float ca{std::cos(spread * 0.5f)};
/* Increase the source volume by up to +3dB for a full spread. */
const float scale{std::sqrt(1.0f + spread/al::MathDefs<float>::Tau())};
const float ZH0_norm{scale};
const float ZH1_norm{scale * 0.5f * (ca+1.f)};
const float ZH2_norm{scale * 0.5f * (ca+1.f)*ca};
const float ZH3_norm{scale * 0.125f * (ca+1.f)*(5.f*ca*ca-1.f)};
/* Zeroth-order */
coeffs[0] *= ZH0_norm;
/* First-order */
coeffs[1] *= ZH1_norm;
coeffs[2] *= ZH1_norm;
coeffs[3] *= ZH1_norm;
/* Second-order */
coeffs[4] *= ZH2_norm;
coeffs[5] *= ZH2_norm;
coeffs[6] *= ZH2_norm;
coeffs[7] *= ZH2_norm;
coeffs[8] *= ZH2_norm;
/* Third-order */
coeffs[9] *= ZH3_norm;
coeffs[10] *= ZH3_norm;
coeffs[11] *= ZH3_norm;
coeffs[12] *= ZH3_norm;
coeffs[13] *= ZH3_norm;
coeffs[14] *= ZH3_norm;
coeffs[15] *= ZH3_norm;
}
return coeffs;
}
void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain,
const al::span<float,MAX_OUTPUT_CHANNELS> gains)
{
auto ambimap = mix->AmbiMap.cbegin();
auto iter = std::transform(ambimap, ambimap+mix->Buffer.size(), gains.begin(),
[coeffs,ingain](const BFChannelConfig &chanmap) noexcept -> float
{ return chanmap.Scale * coeffs[chanmap.Index] * ingain; }
);
std::fill(iter, gains.end(), 0.0f);
}
|