aboutsummaryrefslogtreecommitdiffstats
path: root/core/voice.cpp
blob: 07400b07c586f8b1d10145bdec12101a67d17653 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948

#include "config.h"

#include "voice.h"

#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <new>
#include <stdlib.h>
#include <utility>
#include <vector>

#include "albyte.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "ambidefs.h"
#include "async_event.h"
#include "buffer_storage.h"
#include "context.h"
#include "cpu_caps.h"
#include "devformat.h"
#include "device.h"
#include "filters/biquad.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "fmt_traits.h"
#include "logging.h"
#include "mixer.h"
#include "mixer/defs.h"
#include "mixer/hrtfdefs.h"
#include "opthelpers.h"
#include "resampler_limits.h"
#include "ringbuffer.h"
#include "vector.h"
#include "voice_change.h"

struct CTag;
#ifdef HAVE_SSE
struct SSETag;
#endif
#ifdef HAVE_NEON
struct NEONTag;
#endif
struct CopyTag;


static_assert(!(sizeof(DeviceBase::MixerBufferLine)&15),
    "DeviceBase::MixerBufferLine must be a multiple of 16 bytes");
static_assert(!(MaxResamplerEdge&3), "MaxResamplerEdge is not a multiple of 4");

Resampler ResamplerDefault{Resampler::Linear};

namespace {

using uint = unsigned int;

using HrtfMixerFunc = void(*)(const float *InSamples, float2 *AccumSamples, const uint IrSize,
    const MixHrtfFilter *hrtfparams, const size_t BufferSize);
using HrtfMixerBlendFunc = void(*)(const float *InSamples, float2 *AccumSamples,
    const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
    const size_t BufferSize);

HrtfMixerFunc MixHrtfSamples{MixHrtf_<CTag>};
HrtfMixerBlendFunc MixHrtfBlendSamples{MixHrtfBlend_<CTag>};

inline MixerFunc SelectMixer()
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return Mix_<SSETag>;
#endif
    return Mix_<CTag>;
}

inline HrtfMixerFunc SelectHrtfMixer()
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return MixHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return MixHrtf_<SSETag>;
#endif
    return MixHrtf_<CTag>;
}

inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return MixHrtfBlend_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return MixHrtfBlend_<SSETag>;
#endif
    return MixHrtfBlend_<CTag>;
}

} // namespace

void Voice::InitMixer(al::optional<std::string> resampler)
{
    if(resampler)
    {
        struct ResamplerEntry {
            const char name[16];
            const Resampler resampler;
        };
        constexpr ResamplerEntry ResamplerList[]{
            { "none", Resampler::Point },
            { "point", Resampler::Point },
            { "linear", Resampler::Linear },
            { "cubic", Resampler::Cubic },
            { "bsinc12", Resampler::BSinc12 },
            { "fast_bsinc12", Resampler::FastBSinc12 },
            { "bsinc24", Resampler::BSinc24 },
            { "fast_bsinc24", Resampler::FastBSinc24 },
        };

        const char *str{resampler->c_str()};
        if(al::strcasecmp(str, "bsinc") == 0)
        {
            WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
            str = "bsinc12";
        }
        else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0)
        {
            WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
            str = "cubic";
        }

        auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList),
            [str](const ResamplerEntry &entry) -> bool
            { return al::strcasecmp(str, entry.name) == 0; });
        if(iter == std::end(ResamplerList))
            ERR("Invalid resampler: %s\n", str);
        else
            ResamplerDefault = iter->resampler;
    }

    MixSamples = SelectMixer();
    MixHrtfBlendSamples = SelectHrtfBlendMixer();
    MixHrtfSamples = SelectHrtfMixer();
}


namespace {

void SendSourceStoppedEvent(ContextBase *context, uint id)
{
    RingBuffer *ring{context->mAsyncEvents.get()};
    auto evt_vec = ring->getWriteVector();
    if(evt_vec.first.len < 1) return;

    AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
        AsyncEvent::SourceStateChange)};
    evt->u.srcstate.id = id;
    evt->u.srcstate.state = AsyncEvent::SrcState::Stop;

    ring->writeAdvance(1);
}


const float *DoFilters(BiquadFilter &lpfilter, BiquadFilter &hpfilter, float *dst,
    const al::span<const float> src, int type)
{
    switch(type)
    {
    case AF_None:
        lpfilter.clear();
        hpfilter.clear();
        break;

    case AF_LowPass:
        lpfilter.process(src, dst);
        hpfilter.clear();
        return dst;
    case AF_HighPass:
        lpfilter.clear();
        hpfilter.process(src, dst);
        return dst;

    case AF_BandPass:
        DualBiquad{lpfilter, hpfilter}.process(src, dst);
        return dst;
    }
    return src.data();
}


template<FmtType Type>
inline void LoadSamples(const al::span<float*> dstSamples, const size_t dstOffset,
    const al::byte *src, const size_t srcOffset, const FmtChannels srcChans, const size_t srcStep,
    const size_t samples) noexcept
{
    constexpr size_t sampleSize{sizeof(typename al::FmtTypeTraits<Type>::Type)};
    auto s = src + srcOffset*srcStep*sampleSize;
    if(srcChans == FmtUHJ2 || srcChans == FmtSuperStereo)
    {
        al::LoadSampleArray<Type>(dstSamples[0]+dstOffset, s, srcStep, samples);
        al::LoadSampleArray<Type>(dstSamples[1]+dstOffset, s+sampleSize, srcStep, samples);
        std::fill_n(dstSamples[2]+dstOffset, samples, 0.0f);
    }
    else
    {
        for(auto *dst : dstSamples)
        {
            al::LoadSampleArray<Type>(dst+dstOffset, s, srcStep, samples);
            s += sampleSize;
        }
    }
}

void LoadSamples(const al::span<float*> dstSamples, const size_t dstOffset, const al::byte *src,
    const size_t srcOffset, const FmtType srcType, const FmtChannels srcChans,
    const size_t srcStep, const size_t samples) noexcept
{
#define HANDLE_FMT(T) case T:                                                 \
    LoadSamples<T>(dstSamples, dstOffset, src, srcOffset, srcChans, srcStep,  \
        samples);                                                             \
    break

    switch(srcType)
    {
    HANDLE_FMT(FmtUByte);
    HANDLE_FMT(FmtShort);
    HANDLE_FMT(FmtFloat);
    HANDLE_FMT(FmtDouble);
    HANDLE_FMT(FmtMulaw);
    HANDLE_FMT(FmtAlaw);
    }
#undef HANDLE_FMT
}

void LoadBufferStatic(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
    const size_t dataPosInt, const FmtType sampleType, const FmtChannels sampleChannels,
    const size_t srcStep, const size_t samplesToLoad, const al::span<float*> voiceSamples)
{
    const uint loopStart{buffer->mLoopStart};
    const uint loopEnd{buffer->mLoopEnd};
    ASSUME(loopEnd > loopStart);

    /* If current pos is beyond the loop range, do not loop */
    if(!bufferLoopItem || dataPosInt >= loopEnd)
    {
        /* Load what's left to play from the buffer */
        const size_t remaining{minz(samplesToLoad, buffer->mSampleLen-dataPosInt)};
        LoadSamples(voiceSamples, 0, buffer->mSamples, dataPosInt, sampleType, sampleChannels,
            srcStep, remaining);

        if(const size_t toFill{samplesToLoad - remaining})
        {
            for(auto *chanbuffer : voiceSamples)
            {
                auto srcsamples = chanbuffer + remaining - 1;
                std::fill_n(srcsamples + 1, toFill, *srcsamples);
            }
        }
    }
    else
    {
        /* Load what's left of this loop iteration */
        const size_t remaining{minz(samplesToLoad, loopEnd-dataPosInt)};
        LoadSamples(voiceSamples, 0, buffer->mSamples, dataPosInt, sampleType, sampleChannels,
            srcStep, remaining);

        /* Load repeats of the loop to fill the buffer. */
        const auto loopSize = static_cast<size_t>(loopEnd - loopStart);
        size_t samplesLoaded{remaining};
        while(const size_t toFill{minz(samplesToLoad - samplesLoaded, loopSize)})
        {
            LoadSamples(voiceSamples, samplesLoaded, buffer->mSamples, loopStart, sampleType,
                sampleChannels, srcStep, toFill);
            samplesLoaded += toFill;
        }
    }
}

void LoadBufferCallback(VoiceBufferItem *buffer, const size_t numCallbackSamples,
    const FmtType sampleType, const FmtChannels sampleChannels, const size_t srcStep,
    const size_t samplesToLoad, const al::span<float*> voiceSamples)
{
    /* Load what's left to play from the buffer */
    const size_t remaining{minz(samplesToLoad, numCallbackSamples)};
    LoadSamples(voiceSamples, 0, buffer->mSamples, 0, sampleType, sampleChannels, srcStep,
        remaining);

    if(const size_t toFill{samplesToLoad - remaining})
    {
        for(auto *chanbuffer : voiceSamples)
        {
            auto srcsamples = chanbuffer + remaining - 1;
            std::fill_n(srcsamples + 1, toFill, *srcsamples);
        }
    }
}

void LoadBufferQueue(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
    size_t dataPosInt, const FmtType sampleType, const FmtChannels sampleChannels,
    const size_t srcStep, const size_t samplesToLoad, const al::span<float*> voiceSamples)
{
    /* Crawl the buffer queue to fill in the temp buffer */
    size_t samplesLoaded{0};
    while(buffer && samplesLoaded != samplesToLoad)
    {
        if(dataPosInt >= buffer->mSampleLen)
        {
            dataPosInt -= buffer->mSampleLen;
            buffer = buffer->mNext.load(std::memory_order_acquire);
            if(!buffer) buffer = bufferLoopItem;
            continue;
        }

        const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer->mSampleLen-dataPosInt)};
        LoadSamples(voiceSamples, samplesLoaded, buffer->mSamples, dataPosInt, sampleType,
            sampleChannels, srcStep, remaining);

        samplesLoaded += remaining;
        if(samplesLoaded == samplesToLoad)
            break;

        dataPosInt = 0;
        buffer = buffer->mNext.load(std::memory_order_acquire);
        if(!buffer) buffer = bufferLoopItem;
    }
    if(const size_t toFill{samplesToLoad - samplesLoaded})
    {
        size_t chanidx{0};
        for(auto *chanbuffer : voiceSamples)
        {
            auto srcsamples = chanbuffer + samplesLoaded - 1;
            std::fill_n(srcsamples + 1, toFill, *srcsamples);
            ++chanidx;
        }
    }
}


void DoHrtfMix(const float *samples, const uint DstBufferSize, DirectParams &parms,
    const float TargetGain, const uint Counter, uint OutPos, const bool IsPlaying,
    DeviceBase *Device)
{
    const uint IrSize{Device->mIrSize};
    auto &HrtfSamples = Device->HrtfSourceData;
    /* Source HRTF mixing needs to include the direct delay so it remains
     * aligned with the direct mix's HRTF filtering.
     */
    float2 *AccumSamples{Device->HrtfAccumData + HrtfDirectDelay};

    /* Copy the HRTF history and new input samples into a temp buffer. */
    auto src_iter = std::copy(parms.Hrtf.History.begin(), parms.Hrtf.History.end(),
        std::begin(HrtfSamples));
    std::copy_n(samples, DstBufferSize, src_iter);
    /* Copy the last used samples back into the history buffer for later. */
    if(likely(IsPlaying))
        std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.History.size(),
            parms.Hrtf.History.begin());

    /* If fading and this is the first mixing pass, fade between the IRs. */
    uint fademix{0u};
    if(Counter && OutPos == 0)
    {
        fademix = minu(DstBufferSize, Counter);

        float gain{TargetGain};

        /* The new coefficients need to fade in completely since they're
         * replacing the old ones. To keep the gain fading consistent,
         * interpolate between the old and new target gains given how much of
         * the fade time this mix handles.
         */
        if(Counter > fademix)
        {
            const float a{static_cast<float>(fademix) / static_cast<float>(Counter)};
            gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
        }

        MixHrtfFilter hrtfparams{
            parms.Hrtf.Target.Coeffs,
            parms.Hrtf.Target.Delay,
            0.0f, gain / static_cast<float>(fademix)};
        MixHrtfBlendSamples(HrtfSamples, AccumSamples+OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams,
            fademix);

        /* Update the old parameters with the result. */
        parms.Hrtf.Old = parms.Hrtf.Target;
        parms.Hrtf.Old.Gain = gain;
        OutPos += fademix;
    }

    if(fademix < DstBufferSize)
    {
        const uint todo{DstBufferSize - fademix};
        float gain{TargetGain};

        /* Interpolate the target gain if the gain fading lasts longer than
         * this mix.
         */
        if(Counter > DstBufferSize)
        {
            const float a{static_cast<float>(todo) / static_cast<float>(Counter-fademix)};
            gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
        }

        MixHrtfFilter hrtfparams{
            parms.Hrtf.Target.Coeffs,
            parms.Hrtf.Target.Delay,
            parms.Hrtf.Old.Gain,
            (gain - parms.Hrtf.Old.Gain) / static_cast<float>(todo)};
        MixHrtfSamples(HrtfSamples+fademix, AccumSamples+OutPos, IrSize, &hrtfparams, todo);

        /* Store the now-current gain for next time. */
        parms.Hrtf.Old.Gain = gain;
    }
}

void DoNfcMix(const al::span<const float> samples, FloatBufferLine *OutBuffer, DirectParams &parms,
    const float *TargetGains, const uint Counter, const uint OutPos, DeviceBase *Device)
{
    using FilterProc = void (NfcFilter::*)(const al::span<const float>, float*);
    static constexpr FilterProc NfcProcess[MaxAmbiOrder+1]{
        nullptr, &NfcFilter::process1, &NfcFilter::process2, &NfcFilter::process3};

    float *CurrentGains{parms.Gains.Current.data()};
    MixSamples(samples, {OutBuffer, 1u}, CurrentGains, TargetGains, Counter, OutPos);
    ++OutBuffer;
    ++CurrentGains;
    ++TargetGains;

    const al::span<float> nfcsamples{Device->NfcSampleData, samples.size()};
    size_t order{1};
    while(const size_t chancount{Device->NumChannelsPerOrder[order]})
    {
        (parms.NFCtrlFilter.*NfcProcess[order])(samples, nfcsamples.data());
        MixSamples(nfcsamples, {OutBuffer, chancount}, CurrentGains, TargetGains, Counter, OutPos);
        OutBuffer += chancount;
        CurrentGains += chancount;
        TargetGains += chancount;
        if(++order == MaxAmbiOrder+1)
            break;
    }
}

} // namespace

void Voice::mix(const State vstate, ContextBase *Context, const uint SamplesToDo)
{
    static constexpr std::array<float,MAX_OUTPUT_CHANNELS> SilentTarget{};

    ASSUME(SamplesToDo > 0);

    /* Get voice info */
    uint DataPosInt{mPosition.load(std::memory_order_relaxed)};
    uint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)};
    VoiceBufferItem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)};
    VoiceBufferItem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)};
    const uint increment{mStep};
    if UNLIKELY(increment < 1)
    {
        /* If the voice is supposed to be stopping but can't be mixed, just
         * stop it before bailing.
         */
        if(vstate == Stopping)
            mPlayState.store(Stopped, std::memory_order_release);
        return;
    }

    DeviceBase *Device{Context->mDevice};
    const uint NumSends{Device->NumAuxSends};

    ResamplerFunc Resample{(increment == MixerFracOne && DataPosFrac == 0) ?
                           Resample_<CopyTag,CTag> : mResampler};

    uint Counter{mFlags.test(VoiceIsFading) ? SamplesToDo : 0};
    if(!Counter)
    {
        /* No fading, just overwrite the old/current params. */
        for(auto &chandata : mChans)
        {
            {
                DirectParams &parms = chandata.mDryParams;
                if(!mFlags.test(VoiceHasHrtf))
                    parms.Gains.Current = parms.Gains.Target;
                else
                    parms.Hrtf.Old = parms.Hrtf.Target;
            }
            for(uint send{0};send < NumSends;++send)
            {
                if(mSend[send].Buffer.empty())
                    continue;

                SendParams &parms = chandata.mWetParams[send];
                parms.Gains.Current = parms.Gains.Target;
            }
        }
    }
    else if UNLIKELY(!BufferListItem)
        Counter = std::min(Counter, 64u);

    std::array<float*,DeviceBase::MixerChannelsMax> SamplePointers;
    const al::span<float*> MixingSamples{SamplePointers.data(), mChans.size()};
    auto offset_bufferline = [](DeviceBase::MixerBufferLine &bufline) noexcept -> float*
    { return bufline.data() + MaxResamplerEdge; };
    std::transform(Device->mSampleData.end() - mChans.size(), Device->mSampleData.end(),
        MixingSamples.begin(), offset_bufferline);

    const uint PostPadding{MaxResamplerEdge +
        (mDecoder ? uint{UhjDecoder::sFilterDelay} : 0u)};
    uint buffers_done{0u};
    uint OutPos{0u};
    do {
        /* Figure out how many buffer samples will be needed */
        uint DstBufferSize{SamplesToDo - OutPos};
        uint SrcBufferSize;

        if(increment <= MixerFracOne)
        {
            /* Calculate the last written dst sample pos. */
            uint64_t DataSize64{DstBufferSize - 1};
            /* Calculate the last read src sample pos. */
            DataSize64 = (DataSize64*increment + DataPosFrac) >> MixerFracBits;
            /* +1 to get the src sample count, include padding. */
            DataSize64 += 1 + PostPadding;

            /* Result is guaranteed to be <= BufferLineSize+PostPadding since
             * we won't use more src samples than dst samples+padding.
             */
            SrcBufferSize = static_cast<uint>(DataSize64);
        }
        else
        {
            uint64_t DataSize64{DstBufferSize};
            /* Calculate the end src sample pos, include padding. */
            DataSize64 = (DataSize64*increment + DataPosFrac) >> MixerFracBits;
            DataSize64 += PostPadding;

            if(DataSize64 <= DeviceBase::MixerLineSize - MaxResamplerEdge)
                SrcBufferSize = static_cast<uint>(DataSize64);
            else
            {
                /* If the source size got saturated, we can't fill the desired
                 * dst size. Figure out how many samples we can actually mix.
                 */
                SrcBufferSize = DeviceBase::MixerLineSize - MaxResamplerEdge;

                DataSize64 = SrcBufferSize - PostPadding;
                DataSize64 = ((DataSize64<<MixerFracBits) - DataPosFrac) / increment;
                if(DataSize64 < DstBufferSize)
                {
                    /* Some mixers require being 16-byte aligned, so also limit
                     * to a multiple of 4 samples to maintain alignment.
                     */
                    DstBufferSize = static_cast<uint>(DataSize64) & ~3u;
                    /* If the voice is stopping, only one mixing iteration will
                     * be done, so ensure it fades out completely this mix.
                     */
                    if(unlikely(vstate == Stopping))
                        Counter = std::min(Counter, DstBufferSize);
                }
                ASSUME(DstBufferSize > 0);
            }
        }

        if(unlikely(!BufferListItem))
        {
            const size_t srcOffset{(increment*DstBufferSize + DataPosFrac)>>MixerFracBits};
            auto prevSamples = mPrevSamples.data();
            SrcBufferSize = SrcBufferSize - PostPadding + MaxResamplerEdge;
            for(auto *chanbuffer : MixingSamples)
            {
                auto srcend = std::copy_n(prevSamples->data(), MaxResamplerPadding,
                    chanbuffer-MaxResamplerEdge);

                /* When loading from a voice that ended prematurely, only take
                 * the samples that get closest to 0 amplitude. This helps
                 * certain sounds fade out better.
                 */
                auto abs_lt = [](const float lhs, const float rhs) noexcept -> bool
                { return std::abs(lhs) < std::abs(rhs); };
                auto srciter = std::min_element(chanbuffer, srcend, abs_lt);

                std::fill(srciter+1, chanbuffer + SrcBufferSize, *srciter);

                std::copy_n(chanbuffer-MaxResamplerEdge+srcOffset, prevSamples->size(),
                    prevSamples->data());
                ++prevSamples;
            }
        }
        else
        {
            auto prevSamples = mPrevSamples.data();
            for(auto *chanbuffer : MixingSamples)
            {
                std::copy_n(prevSamples->data(), MaxResamplerEdge, chanbuffer-MaxResamplerEdge);
                ++prevSamples;
            }
            if(mFlags.test(VoiceIsStatic))
                LoadBufferStatic(BufferListItem, BufferLoopItem, DataPosInt, mFmtType,
                    mFmtChannels, mFrameStep, SrcBufferSize, MixingSamples);
            else if(mFlags.test(VoiceIsCallback))
            {
                if(!mFlags.test(VoiceCallbackStopped) && SrcBufferSize > mNumCallbackSamples)
                {
                    const size_t byteOffset{mNumCallbackSamples*mFrameSize};
                    const size_t needBytes{SrcBufferSize*mFrameSize - byteOffset};

                    const int gotBytes{BufferListItem->mCallback(BufferListItem->mUserData,
                        &BufferListItem->mSamples[byteOffset], static_cast<int>(needBytes))};
                    if(gotBytes < 0)
                        mFlags.set(VoiceCallbackStopped);
                    else if(static_cast<uint>(gotBytes) < needBytes)
                    {
                        mFlags.set(VoiceCallbackStopped);
                        mNumCallbackSamples += static_cast<uint>(gotBytes) / mFrameSize;
                    }
                    else
                        mNumCallbackSamples = SrcBufferSize;
                }
                LoadBufferCallback(BufferListItem, mNumCallbackSamples, mFmtType, mFmtChannels,
                    mFrameStep, SrcBufferSize, MixingSamples);
            }
            else
                LoadBufferQueue(BufferListItem, BufferLoopItem, DataPosInt, mFmtType, mFmtChannels,
                    mFrameStep, SrcBufferSize, MixingSamples);

            const size_t srcOffset{(increment*DstBufferSize + DataPosFrac)>>MixerFracBits};
            if(mDecoder)
            {
                SrcBufferSize = SrcBufferSize - PostPadding + MaxResamplerEdge;
                ((*mDecoder).*mDecoderFunc)(MixingSamples, SrcBufferSize,
                    srcOffset * likely(vstate == Playing));
            }
            /* Store the last source samples used for next time. */
            if(likely(vstate == Playing))
            {
                prevSamples = mPrevSamples.data();
                for(auto *chanbuffer : MixingSamples)
                {
                    /* Store the last source samples used for next time. */
                    std::copy_n(chanbuffer-MaxResamplerEdge+srcOffset, prevSamples->size(),
                        prevSamples->data());
                    ++prevSamples;
                }
            }
        }

        auto voiceSamples = MixingSamples.begin();
        for(auto &chandata : mChans)
        {
            /* Resample, then apply ambisonic upsampling as needed. */
            float *ResampledData{Resample(&mResampleState, *voiceSamples, DataPosFrac, increment,
                {Device->ResampledData, DstBufferSize})};
            ++voiceSamples;

            if(mFlags.test(VoiceIsAmbisonic))
                chandata.mAmbiSplitter.processScale({ResampledData, DstBufferSize},
                    chandata.mAmbiHFScale, chandata.mAmbiLFScale);

            /* Now filter and mix to the appropriate outputs. */
            const al::span<float,BufferLineSize> FilterBuf{Device->FilteredData};
            {
                DirectParams &parms = chandata.mDryParams;
                const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
                    {ResampledData, DstBufferSize}, mDirect.FilterType)};

                if(mFlags.test(VoiceHasHrtf))
                {
                    const float TargetGain{parms.Hrtf.Target.Gain * likely(vstate == Playing)};
                    DoHrtfMix(samples, DstBufferSize, parms, TargetGain, Counter, OutPos,
                        (vstate == Playing), Device);
                }
                else
                {
                    const float *TargetGains{likely(vstate == Playing) ? parms.Gains.Target.data()
                        : SilentTarget.data()};
                    if(mFlags.test(VoiceHasNfc))
                        DoNfcMix({samples, DstBufferSize}, mDirect.Buffer.data(), parms,
                            TargetGains, Counter, OutPos, Device);
                    else
                        MixSamples({samples, DstBufferSize}, mDirect.Buffer,
                            parms.Gains.Current.data(), TargetGains, Counter, OutPos);
                }
            }

            for(uint send{0};send < NumSends;++send)
            {
                if(mSend[send].Buffer.empty())
                    continue;

                SendParams &parms = chandata.mWetParams[send];
                const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
                    {ResampledData, DstBufferSize}, mSend[send].FilterType)};

                const float *TargetGains{likely(vstate == Playing) ? parms.Gains.Target.data()
                    : SilentTarget.data()};
                MixSamples({samples, DstBufferSize}, mSend[send].Buffer,
                    parms.Gains.Current.data(), TargetGains, Counter, OutPos);
            }
        }
        /* If the voice is stopping, we're now done. */
        if(unlikely(vstate == Stopping))
            break;

        /* Update positions */
        DataPosFrac += increment*DstBufferSize;
        const uint SrcSamplesDone{DataPosFrac>>MixerFracBits};
        DataPosInt  += SrcSamplesDone;
        DataPosFrac &= MixerFracMask;

        OutPos += DstBufferSize;
        Counter = maxu(DstBufferSize, Counter) - DstBufferSize;

        if(unlikely(!BufferListItem))
        {
            /* Do nothing extra when there's no buffers. */
        }
        else if(mFlags.test(VoiceIsStatic))
        {
            if(BufferLoopItem)
            {
                /* Handle looping static source */
                const uint LoopStart{BufferListItem->mLoopStart};
                const uint LoopEnd{BufferListItem->mLoopEnd};
                if(DataPosInt >= LoopEnd)
                {
                    assert(LoopEnd > LoopStart);
                    DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
                }
            }
            else
            {
                /* Handle non-looping static source */
                if(DataPosInt >= BufferListItem->mSampleLen)
                {
                    BufferListItem = nullptr;
                    break;
                }
            }
        }
        else if(mFlags.test(VoiceIsCallback))
        {
            /* Handle callback buffer source */
            if(SrcSamplesDone < mNumCallbackSamples)
            {
                const size_t byteOffset{SrcSamplesDone*mFrameSize};
                const size_t byteEnd{mNumCallbackSamples*mFrameSize};
                al::byte *data{BufferListItem->mSamples};
                std::copy(data+byteOffset, data+byteEnd, data);
                mNumCallbackSamples -= SrcSamplesDone;
            }
            else
            {
                BufferListItem = nullptr;
                mNumCallbackSamples = 0;
            }
        }
        else
        {
            /* Handle streaming source */
            do {
                if(BufferListItem->mSampleLen > DataPosInt)
                    break;

                DataPosInt -= BufferListItem->mSampleLen;

                ++buffers_done;
                BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed);
                if(!BufferListItem) BufferListItem = BufferLoopItem;
            } while(BufferListItem);
        }
    } while(OutPos < SamplesToDo);

    mFlags.set(VoiceIsFading);

    /* Don't update positions and buffers if we were stopping. */
    if(unlikely(vstate == Stopping))
    {
        mPlayState.store(Stopped, std::memory_order_release);
        return;
    }

    /* Capture the source ID in case it's reset for stopping. */
    const uint SourceID{mSourceID.load(std::memory_order_relaxed)};

    /* Update voice info */
    mPosition.store(DataPosInt, std::memory_order_relaxed);
    mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
    mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
    if(!BufferListItem)
    {
        mLoopBuffer.store(nullptr, std::memory_order_relaxed);
        mSourceID.store(0u, std::memory_order_relaxed);
    }
    std::atomic_thread_fence(std::memory_order_release);

    /* Send any events now, after the position/buffer info was updated. */
    const uint enabledevt{Context->mEnabledEvts.load(std::memory_order_acquire)};
    if(buffers_done > 0 && (enabledevt&AsyncEvent::BufferCompleted))
    {
        RingBuffer *ring{Context->mAsyncEvents.get()};
        auto evt_vec = ring->getWriteVector();
        if(evt_vec.first.len > 0)
        {
            AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
                AsyncEvent::BufferCompleted)};
            evt->u.bufcomp.id = SourceID;
            evt->u.bufcomp.count = buffers_done;
            ring->writeAdvance(1);
        }
    }

    if(!BufferListItem)
    {
        /* If the voice just ended, set it to Stopping so the next render
         * ensures any residual noise fades to 0 amplitude.
         */
        mPlayState.store(Stopping, std::memory_order_release);
        if((enabledevt&AsyncEvent::SourceStateChange))
            SendSourceStoppedEvent(Context, SourceID);
    }
}

void Voice::prepare(DeviceBase *device)
{
    /* Even if storing really high order ambisonics, we only mix channels for
     * orders up to the device order. The rest are simply dropped.
     */
    uint num_channels{(mFmtChannels == FmtUHJ2 || mFmtChannels == FmtSuperStereo) ? 3 :
        ChannelsFromFmt(mFmtChannels, minu(mAmbiOrder, device->mAmbiOrder))};
    if(unlikely(num_channels > device->mSampleData.size()))
    {
        ERR("Unexpected channel count: %u (limit: %zu, %d:%d)\n", num_channels,
            device->mSampleData.size(), mFmtChannels, mAmbiOrder);
        num_channels = static_cast<uint>(device->mSampleData.size());
    }
    if(mChans.capacity() > 2 && num_channels < mChans.capacity())
    {
        decltype(mChans){}.swap(mChans);
        decltype(mPrevSamples){}.swap(mPrevSamples);
    }
    mChans.reserve(maxu(2, num_channels));
    mChans.resize(num_channels);
    mPrevSamples.reserve(maxu(2, num_channels));
    mPrevSamples.resize(num_channels);

    if(IsUHJ(mFmtChannels))
    {
        mDecoder = std::make_unique<UhjDecoder>();
        mDecoderFunc = (mFmtChannels == FmtSuperStereo) ? &UhjDecoder::decodeStereo
            : &UhjDecoder::decode;
    }
    else
    {
        mDecoder = nullptr;
        mDecoderFunc = nullptr;
    }

    /* Clear the stepping value explicitly so the mixer knows not to mix this
     * until the update gets applied.
     */
    mStep = 0;

    /* Make sure the sample history is cleared. */
    std::fill(mPrevSamples.begin(), mPrevSamples.end(), HistoryLine{});

    /* Don't need to set the VoiceIsAmbisonic flag if the device is not higher
     * order than the voice. No HF scaling is necessary to mix it.
     */
    if(mAmbiOrder && device->mAmbiOrder > mAmbiOrder)
    {
        const uint8_t *OrderFromChan{Is2DAmbisonic(mFmtChannels) ?
            AmbiIndex::OrderFrom2DChannel().data() : AmbiIndex::OrderFromChannel().data()};
        const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder);

        const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
        for(auto &chandata : mChans)
        {
            chandata.mAmbiHFScale = scales[*(OrderFromChan++)];
            chandata.mAmbiLFScale = 1.0f;
            chandata.mAmbiSplitter = splitter;
            chandata.mDryParams = DirectParams{};
            chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
            std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
        }
        /* 2-channel UHJ needs different shelf filters. However, we can't just
         * use different shelf filters after mixing it and with any old speaker
         * setup the user has. To make this work, we apply the expected shelf
         * filters for decoding UHJ2 to quad (only needs LF scaling), and act
         * as if those 4 quad channels are encoded right back onto first-order
         * B-Format, which then upsamples to higher order as normal (only needs
         * HF scaling).
         *
         * This isn't perfect, but without an entirely separate and limited
         * UHJ2 path, it's better than nothing.
         */
        if(mFmtChannels == FmtUHJ2)
        {
            mChans[0].mAmbiLFScale = 0.661f;
            mChans[1].mAmbiLFScale = 1.293f;
            mChans[2].mAmbiLFScale = 1.293f;
        }
        mFlags.set(VoiceIsAmbisonic);
    }
    else if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
    {
        /* 2-channel UHJ with first-order output also needs the shelf filter
         * correction applied, except with UHJ output (UHJ2->B-Format->UHJ2 is
         * identity, so don't mess with it).
         */
        const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
        for(auto &chandata : mChans)
        {
            chandata.mAmbiHFScale = 1.0f;
            chandata.mAmbiLFScale = 1.0f;
            chandata.mAmbiSplitter = splitter;
            chandata.mDryParams = DirectParams{};
            chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
            std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
        }
        mChans[0].mAmbiLFScale = 0.661f;
        mChans[1].mAmbiLFScale = 1.293f;
        mChans[2].mAmbiLFScale = 1.293f;
        mFlags.set(VoiceIsAmbisonic);
    }
    else
    {
        for(auto &chandata : mChans)
        {
            chandata.mDryParams = DirectParams{};
            chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
            std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
        }
        mFlags.reset(VoiceIsAmbisonic);
    }
}