aboutsummaryrefslogtreecommitdiffstats
path: root/examples/almultireverb.c
blob: 447216d1feccfec88cd24665d972b243b20d40c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/*
 * OpenAL Multi-Zone Reverb Example
 *
 * Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/* This file contains an example for controlling multiple reverb zones to
 * smoothly transition between reverb environments. The general concept is to
 * extend single-reverb by also tracking the closest adjacent environment, and
 * utilize EAX Reverb's panning vectors to position them relative to the
 * listener.
 */


#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "sndfile.h"

#include "AL/al.h"
#include "AL/alc.h"
#include "AL/efx.h"
#include "AL/efx-presets.h"

#include "common/alhelpers.h"


#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif


/* Filter object functions */
static LPALGENFILTERS alGenFilters;
static LPALDELETEFILTERS alDeleteFilters;
static LPALISFILTER alIsFilter;
static LPALFILTERI alFilteri;
static LPALFILTERIV alFilteriv;
static LPALFILTERF alFilterf;
static LPALFILTERFV alFilterfv;
static LPALGETFILTERI alGetFilteri;
static LPALGETFILTERIV alGetFilteriv;
static LPALGETFILTERF alGetFilterf;
static LPALGETFILTERFV alGetFilterfv;

/* Effect object functions */
static LPALGENEFFECTS alGenEffects;
static LPALDELETEEFFECTS alDeleteEffects;
static LPALISEFFECT alIsEffect;
static LPALEFFECTI alEffecti;
static LPALEFFECTIV alEffectiv;
static LPALEFFECTF alEffectf;
static LPALEFFECTFV alEffectfv;
static LPALGETEFFECTI alGetEffecti;
static LPALGETEFFECTIV alGetEffectiv;
static LPALGETEFFECTF alGetEffectf;
static LPALGETEFFECTFV alGetEffectfv;

/* Auxiliary Effect Slot object functions */
static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;

/* C doesn't allow casting between function and non-function pointer types, so
 * with C99 we need to use a union to reinterpret the pointer type. Pre-C99
 * still needs to use a normal cast and live with the warning (C++ is fine with
 * a regular reinterpret_cast).
 */
#if __STDC_VERSION__ >= 199901L
#define FUNCTION_CAST(T, ptr) (union{void *p; T f;}){ptr}.f
#else
#define FUNCTION_CAST(T, ptr) (T)(ptr)
#endif


/* LoadEffect loads the given initial reverb properties into the given OpenAL
 * effect object, and returns non-zero on success.
 */
static int LoadEffect(ALuint effect, const EFXEAXREVERBPROPERTIES *reverb)
{
    ALenum err;

    alGetError();

    /* Prepare the effect for EAX Reverb (standard reverb doesn't contain
     * the needed panning vectors).
     */
    alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
    if((err=alGetError()) != AL_NO_ERROR)
    {
        fprintf(stderr, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err), err);
        return 0;
    }

    /* Load the reverb properties. */
    alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
    alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
    alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
    alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
    alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
    alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
    alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
    alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
    alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
    alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
    alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
    alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
    alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
    alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
    alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
    alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
    alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
    alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
    alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
    alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
    alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
    alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
    alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);

    /* Check if an error occured, and return failure if so. */
    if((err=alGetError()) != AL_NO_ERROR)
    {
        fprintf(stderr, "Error setting up reverb: %s\n", alGetString(err));
        return 0;
    }

    return 1;
}


/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
 * returns the new buffer ID.
 */
static ALuint LoadSound(const char *filename)
{
    ALenum err, format;
    ALuint buffer;
    SNDFILE *sndfile;
    SF_INFO sfinfo;
    short *membuf;
    sf_count_t num_frames;
    ALsizei num_bytes;

    /* Open the audio file and check that it's usable. */
    sndfile = sf_open(filename, SFM_READ, &sfinfo);
    if(!sndfile)
    {
        fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
        return 0;
    }
    if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(short))/sfinfo.channels)
    {
        fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
        sf_close(sndfile);
        return 0;
    }

    /* Get the sound format, and figure out the OpenAL format */
    if(sfinfo.channels == 1)
        format = AL_FORMAT_MONO16;
    else if(sfinfo.channels == 2)
        format = AL_FORMAT_STEREO16;
    else
    {
        fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
        sf_close(sndfile);
        return 0;
    }

    /* Decode the whole audio file to a buffer. */
    membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(short));

    num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
    if(num_frames < 1)
    {
        free(membuf);
        sf_close(sndfile);
        fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
        return 0;
    }
    num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(short);

    /* Buffer the audio data into a new buffer object, then free the data and
     * close the file.
     */
    buffer = 0;
    alGenBuffers(1, &buffer);
    alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);

    free(membuf);
    sf_close(sndfile);

    /* Check if an error occured, and clean up if so. */
    err = alGetError();
    if(err != AL_NO_ERROR)
    {
        fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
        if(buffer && alIsBuffer(buffer))
            alDeleteBuffers(1, &buffer);
        return 0;
    }

    return buffer;
}


/* Helper to calculate the dot-product of the two given vectors. */
static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
{
    return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
}

/* Helper to normalize a given vector. */
static void normalize(ALfloat vec[3])
{
    ALfloat mag = sqrtf(dot_product(vec, vec));
    if(mag > 0.00001f)
    {
        vec[0] /= mag;
        vec[1] /= mag;
        vec[2] /= mag;
    }
    else
    {
        vec[0] = 0.0f;
        vec[1] = 0.0f;
        vec[2] = 0.0f;
    }
}


/* The main update function to update the listener and environment effects. */
static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
{
    static const ALfloat listener_move_scale = 10.0f;
    /* Individual reverb zones are connected via "portals". Each portal has a
     * position (center point of the connecting area), a normal (facing
     * direction), and a radius (approximate size of the connecting area).
     */
    const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
    const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
    const ALfloat portal_radius = 2.5f;
    ALfloat other_dir[3], this_dir[3];
    ALfloat listener_pos[3];
    ALfloat local_norm[3];
    ALfloat local_dir[3];
    ALfloat near_edge[3];
    ALfloat far_edge[3];
    ALfloat dist, edist;

    /* Update the listener position for the amount of time passed. This uses a
     * simple triangular LFO to offset the position (moves along the X axis
     * between -listener_move_scale and +listener_move_scale for each
     * transition).
     */
    listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
    listener_pos[1] = 0.0f;
    listener_pos[2] = 0.0f;
    alListenerfv(AL_POSITION, listener_pos);

    /* Calculate local_dir, which represents the listener-relative point to the
     * adjacent zone (should also include orientation). Because EAX Reverb uses
     * left-handed coordinates instead of right-handed like the rest of OpenAL,
     * negate Z for the local values.
     */
    local_dir[0] = portal_pos[0] - listener_pos[0];
    local_dir[1] = portal_pos[1] - listener_pos[1];
    local_dir[2] = -(portal_pos[2] - listener_pos[2]);
    /* A normal application would also rotate the portal's normal given the
     * listener orientation, to get the listener-relative normal.
     */
    local_norm[0] = portal_norm[0];
    local_norm[1] = portal_norm[1];
    local_norm[2] = -portal_norm[2];

    /* Calculate the distance from the listener to the portal, and ensure it's
     * far enough away to not suffer severe floating-point precision issues.
     */
    dist = sqrtf(dot_product(local_dir, local_dir));
    if(dist > 0.00001f)
    {
        const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
        ALuint other_effect, this_effect;
        ALfloat magnitude, dir_dot_norm;

        /* Normalize the direction to the portal. */
        local_dir[0] /= dist;
        local_dir[1] /= dist;
        local_dir[2] /= dist;

        /* Calculate the dot product of the portal's local direction and local
         * normal, which is used for angular and side checks later on.
         */
        dir_dot_norm = dot_product(local_dir, local_norm);

        /* Figure out which zone we're in. */
        if(dir_dot_norm <= 0.0f)
        {
            /* We're in front of the portal, so we're in Zone 0. */
            this_effect = effects[0];
            other_effect = effects[1];
            this_reverb = &reverbs[0];
            other_reverb = &reverbs[1];
        }
        else
        {
            /* We're behind the portal, so we're in Zone 1. */
            this_effect = effects[1];
            other_effect = effects[0];
            this_reverb = &reverbs[1];
            other_reverb = &reverbs[0];
        }

        /* Calculate the listener-relative extents of the portal. */
        /* First, project the listener-to-portal vector onto the portal's plane
         * to get the portal-relative direction along the plane that goes away
         * from the listener (toward the farthest edge of the portal).
         */
        far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
        far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
        far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;

        edist = sqrtf(dot_product(far_edge, far_edge));
        if(edist > 0.0001f)
        {
            /* Rescale the portal-relative vector to be at the radius edge. */
            ALfloat mag = portal_radius / edist;
            far_edge[0] *= mag;
            far_edge[1] *= mag;
            far_edge[2] *= mag;

            /* Calculate the closest edge of the portal by negating the
             * farthest, and add an offset to make them both relative to the
             * listener.
             */
            near_edge[0] = local_dir[0]*dist - far_edge[0];
            near_edge[1] = local_dir[1]*dist - far_edge[1];
            near_edge[2] = local_dir[2]*dist - far_edge[2];
            far_edge[0] += local_dir[0]*dist;
            far_edge[1] += local_dir[1]*dist;
            far_edge[2] += local_dir[2]*dist;

            /* Normalize the listener-relative extents of the portal, then
             * calculate the panning magnitude for the other zone given the
             * apparent size of the opening. The panning magnitude affects the
             * envelopment of the environment, with 1 being a point, 0.5 being
             * half coverage around the listener, and 0 being full coverage.
             */
            normalize(far_edge);
            normalize(near_edge);
            magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);

            /* Recalculate the panning direction, to be directly between the
             * direction of the two extents.
             */
            local_dir[0] = far_edge[0] + near_edge[0];
            local_dir[1] = far_edge[1] + near_edge[1];
            local_dir[2] = far_edge[2] + near_edge[2];
            normalize(local_dir);
        }
        else
        {
            /* If we get here, the listener is directly in front of or behind
             * the center of the portal, making all aperture edges effectively
             * equidistant. Calculating the panning magnitude is simplified,
             * using the arctangent of the radius and distance.
             */
            magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
        }

        /* Scale the other zone's panning vector. */
        other_dir[0] = local_dir[0] * magnitude;
        other_dir[1] = local_dir[1] * magnitude;
        other_dir[2] = local_dir[2] * magnitude;
        /* Pan the current zone to the opposite direction of the portal, and
         * take the remaining percentage of the portal's magnitude.
         */
        this_dir[0] = local_dir[0] * (magnitude-1.0f);
        this_dir[1] = local_dir[1] * (magnitude-1.0f);
        this_dir[2] = local_dir[2] * (magnitude-1.0f);

        /* Now set the effects' panning vectors and gain. Energy is shared
         * between environments, so attenuate according to each zone's
         * contribution (note: gain^2 = energy).
         */
        alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
        alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
        alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
        alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);

        alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
        alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
        alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
        alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
    }
    else
    {
        /* We're practically in the center of the portal. Give the panning
         * vectors a 50/50 split, with Zone 0 covering the half in front of
         * the normal, and Zone 1 covering the half behind.
         */
        this_dir[0] = local_norm[0] / 2.0f;
        this_dir[1] = local_norm[1] / 2.0f;
        this_dir[2] = local_norm[2] / 2.0f;

        other_dir[0] = local_norm[0] / -2.0f;
        other_dir[1] = local_norm[1] / -2.0f;
        other_dir[2] = local_norm[2] / -2.0f;

        alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
        alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
        alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
        alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);

        alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
        alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
        alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
        alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
    }

    /* Finally, update the effect slots with the updated effect parameters. */
    alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
    alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
}


int main(int argc, char **argv)
{
    static const int MaxTransitions = 8;
    EFXEAXREVERBPROPERTIES reverbs[2] = {
        EFX_REVERB_PRESET_CARPETEDHALLWAY,
        EFX_REVERB_PRESET_BATHROOM
    };
    ALCdevice *device = NULL;
    ALCcontext *context = NULL;
    ALuint effects[2] = { 0, 0 };
    ALuint slots[2] = { 0, 0 };
    ALuint direct_filter = 0;
    ALuint buffer = 0;
    ALuint source = 0;
    ALCint num_sends = 0;
    ALenum state = AL_INITIAL;
    ALfloat direct_gain = 1.0f;
    int basetime = 0;
    int loops = 0;

    /* Print out usage if no arguments were specified */
    if(argc < 2)
    {
        fprintf(stderr, "Usage: %s [-device <name>] [options] <filename>\n\n"
        "Options:\n"
        "\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
        argv[0]);
        return 1;
    }

    /* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
     * sends (if multiple sends are supported, 2 are provided by default; if
     * you want more, you have to request it through alcCreateContext).
     */
    argv++; argc--;
    if(InitAL(&argv, &argc) != 0)
        return 1;

    while(argc > 0)
    {
        if(strcmp(argv[0], "-nodirect") == 0)
            direct_gain = 0.0f;
        else
            break;
        argv++;
        argc--;
    }
    if(argc < 1)
    {
        fprintf(stderr, "No filename spacified.\n");
        CloseAL();
        return 1;
    }

    context = alcGetCurrentContext();
    device = alcGetContextsDevice(context);

    if(!alcIsExtensionPresent(device, "ALC_EXT_EFX"))
    {
        fprintf(stderr, "Error: EFX not supported\n");
        CloseAL();
        return 1;
    }

    num_sends = 0;
    alcGetIntegerv(device, ALC_MAX_AUXILIARY_SENDS, 1, &num_sends);
    if(alcGetError(device) != ALC_NO_ERROR || num_sends < 2)
    {
        fprintf(stderr, "Error: Device does not support multiple sends (got %d, need 2)\n",
                num_sends);
        CloseAL();
        return 1;
    }

    /* Define a macro to help load the function pointers. */
#define LOAD_PROC(T, x)  ((x) = FUNCTION_CAST(T, alGetProcAddress(#x)))
    LOAD_PROC(LPALGENFILTERS, alGenFilters);
    LOAD_PROC(LPALDELETEFILTERS, alDeleteFilters);
    LOAD_PROC(LPALISFILTER, alIsFilter);
    LOAD_PROC(LPALFILTERI, alFilteri);
    LOAD_PROC(LPALFILTERIV, alFilteriv);
    LOAD_PROC(LPALFILTERF, alFilterf);
    LOAD_PROC(LPALFILTERFV, alFilterfv);
    LOAD_PROC(LPALGETFILTERI, alGetFilteri);
    LOAD_PROC(LPALGETFILTERIV, alGetFilteriv);
    LOAD_PROC(LPALGETFILTERF, alGetFilterf);
    LOAD_PROC(LPALGETFILTERFV, alGetFilterfv);

    LOAD_PROC(LPALGENEFFECTS, alGenEffects);
    LOAD_PROC(LPALDELETEEFFECTS, alDeleteEffects);
    LOAD_PROC(LPALISEFFECT, alIsEffect);
    LOAD_PROC(LPALEFFECTI, alEffecti);
    LOAD_PROC(LPALEFFECTIV, alEffectiv);
    LOAD_PROC(LPALEFFECTF, alEffectf);
    LOAD_PROC(LPALEFFECTFV, alEffectfv);
    LOAD_PROC(LPALGETEFFECTI, alGetEffecti);
    LOAD_PROC(LPALGETEFFECTIV, alGetEffectiv);
    LOAD_PROC(LPALGETEFFECTF, alGetEffectf);
    LOAD_PROC(LPALGETEFFECTFV, alGetEffectfv);

    LOAD_PROC(LPALGENAUXILIARYEFFECTSLOTS, alGenAuxiliaryEffectSlots);
    LOAD_PROC(LPALDELETEAUXILIARYEFFECTSLOTS, alDeleteAuxiliaryEffectSlots);
    LOAD_PROC(LPALISAUXILIARYEFFECTSLOT, alIsAuxiliaryEffectSlot);
    LOAD_PROC(LPALAUXILIARYEFFECTSLOTI, alAuxiliaryEffectSloti);
    LOAD_PROC(LPALAUXILIARYEFFECTSLOTIV, alAuxiliaryEffectSlotiv);
    LOAD_PROC(LPALAUXILIARYEFFECTSLOTF, alAuxiliaryEffectSlotf);
    LOAD_PROC(LPALAUXILIARYEFFECTSLOTFV, alAuxiliaryEffectSlotfv);
    LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTI, alGetAuxiliaryEffectSloti);
    LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTIV, alGetAuxiliaryEffectSlotiv);
    LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTF, alGetAuxiliaryEffectSlotf);
    LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTFV, alGetAuxiliaryEffectSlotfv);
#undef LOAD_PROC

    /* Load the sound into a buffer. */
    buffer = LoadSound(argv[0]);
    if(!buffer)
    {
        CloseAL();
        return 1;
    }

    /* Generate two effects for two "zones", and load a reverb into each one.
     * Note that unlike single-zone reverb, where you can store one effect per
     * preset, for multi-zone reverb you should have one effect per environment
     * instance, or one per audible zone. This is because we'll be changing the
     * effects' properties in real-time based on the environment instance
     * relative to the listener.
     */
    alGenEffects(2, effects);
    if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
    {
        alDeleteEffects(2, effects);
        alDeleteBuffers(1, &buffer);
        CloseAL();
        return 1;
    }

    /* Create the effect slot objects, one for each "active" effect. */
    alGenAuxiliaryEffectSlots(2, slots);

    /* Tell the effect slots to use the loaded effect objects, with slot 0 for
     * Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
     * effect properties. Modifying or deleting the effect object afterward
     * won't directly affect the effect slot until they're reapplied like this.
     */
    alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
    alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
    assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");

    /* For the purposes of this example, prepare a filter that optionally
     * silences the direct path which allows us to hear just the reverberation.
     * A filter like this is normally used for obstruction, where the path
     * directly between the listener and source is blocked (the exact
     * properties depending on the type and thickness of the obstructing
     * material).
     */
    alGenFilters(1, &direct_filter);
    alFilteri(direct_filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
    alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
    assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");

    /* Create the source to play the sound with, place it in front of the
     * listener's path in the left zone.
     */
    source = 0;
    alGenSources(1, &source);
    alSourcei(source, AL_LOOPING, AL_TRUE);
    alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
    alSourcei(source, AL_DIRECT_FILTER, (ALint)direct_filter);
    alSourcei(source, AL_BUFFER, (ALint)buffer);

    /* Connect the source to the effect slots. Here, we connect source send 0
     * to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
     * to occlude the source from each zone by varying amounts; for example, a
     * source within a particular zone would be unfiltered, while a source that
     * can only see a zone through a window or thin wall may be attenuated for
     * that zone.
     */
    alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[0], 0, AL_FILTER_NULL);
    alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[1], 1, AL_FILTER_NULL);
    assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");

    /* Get the current time as the base for timing in the main loop. */
    basetime = altime_get();
    loops = 0;
    printf("Transition %d of %d...\n", loops+1, MaxTransitions);

    /* Play the sound for a while. */
    alSourcePlay(source);
    do {
        int curtime;
        ALfloat timediff;

        /* Start a batch update, to ensure all changes apply simultaneously. */
        alcSuspendContext(context);

        /* Get the current time to track the amount of time that passed.
         * Convert the difference to seconds.
         */
        curtime = altime_get();
        timediff = (float)(curtime - basetime) / 1000.0f;

        /* Avoid negative time deltas, in case of non-monotonic clocks. */
        if(timediff < 0.0f)
            timediff = 0.0f;
        else while(timediff >= 4.0f*(float)((loops&1)+1))
        {
            /* For this example, each transition occurs over 4 seconds, and
             * there's 2 transitions per cycle.
             */
            if(++loops < MaxTransitions)
                printf("Transition %d of %d...\n", loops+1, MaxTransitions);
            if(!(loops&1))
            {
                /* Cycle completed. Decrease the delta and increase the base
                 * time to start a new cycle.
                 */
                timediff -= 8.0f;
                basetime += 8000;
            }
        }

        /* Update the listener and effects, and finish the batch. */
        UpdateListenerAndEffects(timediff, slots, effects, reverbs);
        alcProcessContext(context);

        al_nssleep(10000000);

        alGetSourcei(source, AL_SOURCE_STATE, &state);
    } while(alGetError() == AL_NO_ERROR && state == AL_PLAYING && loops < MaxTransitions);

    /* All done. Delete resources, and close down OpenAL. */
    alDeleteSources(1, &source);
    alDeleteAuxiliaryEffectSlots(2, slots);
    alDeleteEffects(2, effects);
    alDeleteFilters(1, &direct_filter);
    alDeleteBuffers(1, &buffer);

    CloseAL();

    return 0;
}